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What to Submit

For this project you will need to create an m-file which does all the tasks listed
in this project in order. You should then publish the m-file and print.

Each task should be within its own Matlab code section so that the result of
each task appears directly after that task, not all at the end. If you’re not sure
how to properly mark up an m-file for publication like this then ask me.

Matrices and Determinants

Matrices can be stored in Matlab using bracket notation with semicolons sepa-
rating rows and either commas or spaces separating columns within those rows:

A = [1 2 3;-4 0 7]

A =

1 2 3

-4 0 7

If a matrix is square then the determinant can be found using the det command:

B = [1 -1 0 ; -7 -1 5 ; 8 1 0];

det(B)

ans =

-45
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Task 1: Find the determinant of the matrix


3 2 8 −1
0 −1 −3 5
2 2 −2 7
5 1 0 1


If the matrix has (symbolic) variables in it this is still okay:

syms a;

A = [a 2 -1; 0 3 a; a a 5];

det(A)

ans =

- a^3 + 2*a^2 + 18*a

Task 2: Declare the variable b as symbolic, and find where the determinant of
the following matrix is zero using det wrapped in solve.

 3 b 2
b b 5
1 −1 5



Factoring Polynomials

When hunting for fundamental sets we often have to factor the characteristic
polynomial. Matlab can make this process easy once we understand what the
output looks like. Here is the factorization of x3 − x2 − 8x + 12:

syms x

factor(x^3-x^2-8*x+12)

ans =

[ x + 3, x - 2, x - 2]

We see that Matlab gives us the factors, with multiplicity if appropriate, as a
list. Notice that in standard mode Matlab will not factor out complex terms:

factor(x^2+4)
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ans =

x^2 + 4

If we wish it to do so then we should tell it:

factor(x^2+4,’FactorMode’,’Complex’)

ans =

[ x + 2.0i, x - 2.0i]

Task 3: Factor the polynomial x2 − 7x + 10.

Task 4: Factor the polynomial x8−18x6−4x5−51x4 +612x3−216x2 +648x−
4860 and include complex terms.

Solving Higher Order Homogeneous Linear Differential
Equations

Matlab can easily handle higher order linear differential equations. The key
thing to know is to set the unknown function up properly and use the dsolve

command. For a simple differential equation like y′′ − 3y′ − 4y = 0 we simply
do something like:

syms y(t)

dsolve(diff(y,2)-3*diff(y)-4*y==0)

ans =

C1*exp(-t) + C2*exp(4*t)

If we want to give it some initial values it’s notationally easier to prepare the
derivatives before using dsolve and it makes things look prettier. Notice below
that Matlab will happily accept the definitions of Dy and D2y as derivatives
even though y itself is symbolic and not known. Here’s the above DE with the
conditions y(1) = −1 and y′(1) = 3 added to make it an IVP.

syms y(t)

Dy = diff(y);

D2y = diff(y,2);

dsolve(D2y-3*Dy-4*y==0,y(1)==-1,Dy(1)==3)

ans =

(2*exp(4*t)*exp(-4))/5 - (7*exp(-t)*exp(1))/5
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Task 5: Solve the initial value problem y′′ − 3y′ + 10y = 0 with y(0) = 1 and
y′(0) = 17.

Task 6: Solve the differential equation D5y−9D4y+36D3y−108D2y+243Dy−
243y = 0.

Nonhomogeneous

It makes no difference to Matlab whether the system is nonhomogeneous. For
example here’s the solution to the differential equation y′′ − y′ − 2y = 3:

syms y(t);Dy=diff(y);D2y=diff(y,2);

dsolve(D2y-Dy-2*y==3)

ans =

C5*exp(-t) + C6*exp(2*t) - 3/2

Task 7: Solve the differential equation y′′ − y′ − 2y = cos(t).

Task 8: Solve the initial value problem y′′′+3y′′−4y′ = t+cos(t) with y(0) = 0
and y′(0) = 1 and y′′(0) = 3.

Laplace Transforms and Inverse Laplace Transforms

Matlab can calculate Laplace Transforms easily using the laplace command,
as long as you understand exactly what to plug in. Basically we have to give it
the function and both the “input” and “output” variables. We usually go from
t to s and so we’d do something like this:

clear all

syms s t

laplace(exp(3*t),t,s)

ans =

1/(s - 3)

So if something it not in our table it’s still easy. Here I wrapped the answer in
simplify because it made the result nicer:

simplify(laplace(t^3*sin(t)*exp(3*t),t,s))

ans =

(24*(s^3 - 9*s^2 + 26*s - 24))/(s^2 - 6*s + 10)^4
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Task 9: Find and simplify L{t3 sin(2t)}.

Task 10: Find and simplify L{(2t2 − t) cos(5t)}.

Matlab can also take inverse Laplace Transforms with the ilaplace command.
For example suppose you know that L{y} = s+1

s2+9 and you wish to know y. No-

tationally you could think of this as y = L−1
{

s+1
s2+9

}
and Matlab can compute

this with:

clear all

syms s t

ilaplace((s+1)/(s^2+9),s,t)

ans =

cos(3*t) + sin(3*t)/3

Task 11: Find the function y which satisfies L{y} = 1
(s−2)3 .

Task 12: Find the function y which satisfies L{y} = s2+s+1
s3−5s2−2s .
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