
MATH 246: Chapter 1 Section 7

Justin Wyss-Gallifent

The overarching goal of this section is to find things out about solutions to DEs without actually
solving them explicitly. Instead we attack them via approximations.

1. The Beginning

(a) Introduction to Euler’s Method:

Suppose we’re dealing with the IVP given by:

dy

dt
= t+ y with y(1) = 2

Suppose we’d really like to know y(2).

The DE tells us that at the point (1, 2) the slope of the solution is dy

dt
(1, 2) = 3. Of course

the solution is not a straight line, meaning if we move right 1 we won’t go up exactly 3,
but if things aren’t too bad then we would go up approximately 3. Thus we can conclude
that y(1 + 1) ≈ 2 + 3 or y(2) ≈ 5.

This approximately probably stinks, so what we can do instead is go to the right just 0.5
and up 0.5(3), then do the process again, now anchored at the new point. That is:

At (1, 2) the slope is dy

dt
(1, 2) = 3 so we go over 0.5 and up 0.5(3) and now we’re at

(1 + 0.5, 2 + 0.5(3)) = (1.5, 3.5).

At (1.5, 3.5) the slope is dy

dt
(1.5, 3.5) = 5 so we go over 0.5 and up 0.5(5) and now we’re

at (1.5 + 0.5, 3.5 + 0.5(5)) = (2, 6)

Then we conclude y(2) ≈ 6. This approximation is probably better.



(b) Euler’s Method.

This process is known as Euler’s Method. We start with an IVP given by dy

dt
= f(t, y)

with y(t0) = y0. and we choose a small h. We did h = 1 and then h = 0.5. We then
proceed as follows:

(t1, y1) = (t0 + h, y0 + hf(t0, y0))

(t2, y2) = (t1 + h, y1 + hf(t1, y1))

Or, more generally:

Euler’s Method

ti = ti−1 + h

yi ≈ yi−1 + hf(ti−1, yi−1)

Example: Again with dy

dt
= t + y with y(1) = 2. Let’s approximate y(2) using n = 10

steps of size h = 0.1.

This can all be put more nicely into a table as follows:

0 1 2 y(1)=2
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 1 + 0.1 = 1.1 2 + 0.3 = 2.3 y(1.1) ≈ 2.3
2 1.1 + 0.1 = 1.2 2.3 + 0.34 = 2.64 y(1.2) ≈ 2.64
3 1.2 + 0.1 = 1.3 2.64 + 0.384 = 3.024 y(1.3) ≈ 3.024
4 1.3 + 0.1 = 1.4 3.024 + 0.4324 = 3.4564 y(1.4) ≈ 3.4564
5 1.4 + 0.1 = 1.5 3.4564 + 0.48564 = 3.94204 y(1.5) ≈ 3.94204
6 1.5 + 0.1 = 1.6 3.94204 + 0.544204 = 4.48624 y(1.6) ≈ 4.48624
7 1.6 + 0.1 = 1.7 4.48624 + 0.608624 = 5.09487 y(1.7) ≈ 5.09487
8 1.7 + 0.1 = 1.8 5.09487 + 0.679487 = 5.77436 y(1.8) ≈ 5.77436
9 1.8 + 0.1 = 1.9 5.77436 + 0.757436 = 6.53179 y(1.9) ≈ 6.53179
10 1.9 + 0.1 = 2 6.53179 + 0.843179 = 7.37497 y(2) ≈ 7.37497

Of course the further we go the less accurate we get but if the DE is not so bad then
maybe we’re good. The solution to the above DE (first-order linear) is y(t) = 4et−1

−t−1
and so y(2) = 4e− 2− 1 ≈ 7.8731273138361809414411498854106 so our approximation is
not terrible.

Example: Same IVP but we could to better by reducing h and increasing the number
of steps. Just for fun, compare to 1000 steps of size h = 0.001 each and see how close the
approximation is at the end!

Note: This was generated in Python and some approximation and truncation is taking
place.

0 1 2 y(1)=2
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 1 + 0.001 = 1.001 2 + 0.003 = 2.003 y(1.001) ≈ 2.003
2 1.001 + 0.001 = 1.002 2.003 + 0.003004 = 2.006 y(1.002) ≈ 2.006
3 1.002 + 0.001 = 1.003 2.006 + 0.003008 = 2.00901 y(1.003) ≈ 2.00901
... ... ... ...
998 1.997 + 0.001 = 1.998 7.83816 + 0.00983516 = 7.84799 y(1.998) ≈ 7.84799
999 1.998 + 0.001 = 1.999 7.84799 + 0.00984599 = 7.85784 y(1.999) ≈ 7.85784
1000 1.999 + 0.001 = 2 7.85784 + 0.00985684 = 7.8677 y(2) ≈ 7.8677



2. Improving:

We started this whole process knowing t0 and y0 = y(t0) and wanting to find t1 and y1 = y(t1).
Given that we know that

dy

dt
= f(t, y)

the Fundamental Theorem of Calculus tells us that

y(t1)− y(t0) =

∫ t1

t0

f(t, y) dt

where the integrand is really a function of just t since y is a function of t, albeit unknown.
This is the same as the following which we’ll call our Basic Formula:

y1 = y0 +

∫ t1

t0

f(t, y) dt

so the real question is how to tackle the integral.

Let’s revisit integrals. Suppose you wanted to know
∫ b

a
g(x) dx but couldn’t do it. One really

bad approximation is just a left rectangle. That is

∫ b

a

g(x) dx ≈ (b− a)g(a)

Using this in the Basic Formula yields:

y1 = y0 +

∫ t1

t0

f(t, y) dt

y1 ≈ y0 + (t1 − t0)f(t0, y0)

y1 ≈ y0 + (t1 − t0)f(t0, y(t0))

y1 ≈ y0 + (t1 − t0)f(t0, y0)

y1 ≈ y0 + hf(t0, y0)

Well then, we’ve just got Euler’s Method!

What this suggests is that better methods of approximating the integral yield better approxi-
mations for our IVP.



3. The Runge-Trapezoid Method:

A second way to approximate the integal would be to construct a trapezoid using the endpoints:

∫ b

a

g(x) dx ≈

1

2
(b− a)(g(a) + g(b))

Using this in the Basic Formula yields:

y1 = y0 +

∫ t1

t0

f(t, y) dt

y1 ≈ y0 +
1

2
(t1 − t0)(f(t0, y0) + f(t1, y1))

y1 ≈ y0 +
1

2
h(f(t0, y0) + f(t0 + h, y1))

Which is all fun and games until we notice the right side has a y1 in it, and y1 is what we
want. How can we resolve this? We cheat, and we plug in the result of Euler’s Method into
this:

y1 ≈ y0 +
1

2
h(f(t0, y0) + f(t0 + h, y0 + hf(t0, y0)

︸ ︷︷ ︸

Euler:

))

Haha what fun.

Runge-Trapezoidal Method

ti = ti−1 + h

yi ≈ yi−1 +
1

2
h
(

f(ti−1, yi−1) + f(ti−1 + h, yi−1 + hf(ti−1, yi−1))
)

Here’s the Runge-Trapezoidal Method applied to our first IVP with 10 steps of size 0.1:

0 1 2 y(1)=2
i ti yi So
1 1 + 0.1 = 1.1 2.32 y(1.1) ≈ 2.32
2 1.1 + 0.1 = 1.2 2.6841 y(1.2) ≈ 2.6841
3 1.2 + 0.1 = 1.3 3.09693 y(1.3) ≈ 3.09693
4 1.3 + 0.1 = 1.4 3.56361 y(1.4) ≈ 3.56361
5 1.4 + 0.1 = 1.5 4.08979 y(1.5) ≈ 4.08979
6 1.5 + 0.1 = 1.6 4.68171 y(1.6) ≈ 4.68171
7 1.6 + 0.1 = 1.7 5.34629 y(1.7) ≈ 5.34629
8 1.7 + 0.1 = 1.8 6.09116 y(1.8) ≈ 6.09116
9 1.8 + 0.1 = 1.9 6.92473 y(1.9) ≈ 6.92473
10 1.9 + 0.1 = 2 7.85632 y(2) ≈ 7.85632

Remember the exact value of y(2) = 4e− 2− 1 ≈ 7.8731273138361809414411498854106.



4. The Runge-Midpoint Method:

A third way to approximate the integral is a midpoint rectangle:

∫ b

a

g(x) dx ≈ (b− a)g

(
a+ b

2

)

Using this in the Basic Formula and using the fact that our midpoint is t0 +
1

2
h yields:

y1 = y0 +

∫ t1

t0

f(t, y) dt

y1 ≈ y0 + (t1 − t0)f

(

t0 +
1

2
h, y

(

t0 +
1

2
h

))

y1 ≈ y0 + hf

(

t0 +
1

2
h, y

(

t0 +
1

2
h

))

Which again is all fun and games until we realize we don’t know y
(
t0 +

1

2
h
)
so we swap in

Euler’s Method again using a half-step, that is y0 +
1

2
hf(t0, y0) and so

y1 ≈ y0 + hf
(

t0 +
1

2
h, y0 +

1

2
hf(t0, y0)

︸ ︷︷ ︸

Euler

)

Runge-Midpoint Method

ti = ti−1 + h

yi ≈ yi−1 + hf

(

ti−1 +
1

2
h, yi−1 +

1

2
hf(ti−1, yi−1)

)

The Runge-Midpoine Method applied to our first IVP actually gives the same result as the
Runge-Trapezoidal Method, so we omit it.

However on the last page we have all three methods applied to an IVP.



Let y(t) be the solution to dy

dt
= ty+ t with y(0) = 1. Approximate y(1) using n = 10 steps of

size h = 0.1:

Euler
0 0 1 y(0)=1
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 0 + 0.1 = 0.1 1 + 0 = 1 y(0.1) ≈ 1
2 0.1 + 0.1 = 0.2 1 + 0.02 = 1.02 y(0.2) ≈ 1.02
3 0.2 + 0.1 = 0.3 1.02 + 0.0404 = 1.0604 y(0.3) ≈ 1.0604
4 0.3 + 0.1 = 0.4 1.0604 + 0.061812 = 1.12221 y(0.4) ≈ 1.12221
5 0.4 + 0.1 = 0.5 1.12221 + 0.0848885 = 1.2071 y(0.5) ≈ 1.2071
6 0.5 + 0.1 = 0.6 1.2071 + 0.110355 = 1.31746 y(0.6) ≈ 1.31746
7 0.6 + 0.1 = 0.7 1.31746 + 0.139047 = 1.4565 y(0.7) ≈ 1.4565
8 0.7 + 0.1 = 0.8 1.4565 + 0.171955 = 1.62846 y(0.8) ≈ 1.62846
9 0.8 + 0.1 = 0.9 1.62846 + 0.210277 = 1.83873 y(0.9) ≈ 1.83873
10 0.9 + 0.1 = 1 1.83873 + 0.255486 = 2.09422 y(1) ≈ 2.09422

Runge-Trapezoidal
0 0 1 y(0)=1
i ti yi So
1 0 + 0.1 = 0.1 1.01 y(0.1) ≈ 1.01
2 0.1 + 0.1 = 0.2 1.04035 y(0.2) ≈ 1.04035
3 0.2 + 0.1 = 0.3 1.09197 y(0.3) ≈ 1.09197
4 0.3 + 0.1 = 0.4 1.16645 y(0.4) ≈ 1.16645
5 0.4 + 0.1 = 0.5 1.2661 y(0.5) ≈ 1.2661
6 0.5 + 0.1 = 0.6 1.39414 y(0.6) ≈ 1.39414
7 0.6 + 0.1 = 0.7 1.55478 y(0.7) ≈ 1.55478
8 0.7 + 0.1 = 0.8 1.75355 y(0.8) ≈ 1.75355
9 0.8 + 0.1 = 0.9 1.99751 y(0.9) ≈ 1.99751
10 0.9 + 0.1 = 1 2.29576 y(1) ≈ 2.29576

Runge-Midpoint
0 0 1 y(0)=1
i ti yi So
1 0 + 0.1 = 0.1 1.01 y(0.1) ≈ 1.01
2 0.1 + 0.1 = 0.2 1.0403 y(0.2) ≈ 1.0403
3 0.2 + 0.1 = 0.3 1.09182 y(0.3) ≈ 1.09182
4 0.3 + 0.1 = 0.4 1.16613 y(0.4) ≈ 1.16613
5 0.4 + 0.1 = 0.5 1.26556 y(0.5) ≈ 1.26556
6 0.5 + 0.1 = 0.6 1.39328 y(0.6) ≈ 1.39328
7 0.6 + 0.1 = 0.7 1.55351 y(0.7) ≈ 1.55351
8 0.7 + 0.1 = 0.8 1.75172 y(0.8) ≈ 1.75172
9 0.8 + 0.1 = 0.9 1.99497 y(0.9) ≈ 1.99497
10 0.9 + 0.1 = 1 2.2923 y(1) ≈ 2.2923

For reference the actual answer is 2e0.5 − 1 ≈ 2.2974425414002562936973015756283.


