MATH 246: Chapter 1 Section 8 Justin Wyss-Gallifent

1. A Bit of History and Introduction: Suppose H(x, y) is a function and y is a function of x. Then by the chain rule we know $\frac{d}{dx}H(x, y) = H_x(x, y) + H_y(x, y)\frac{dy}{dx}$.

So now consider the following differential equation:

$$3x^2y^2 + 2x^3y\frac{dy}{dx} = 0$$

You may notice that the left side looks like the result of the chain rule and is actually so, when $H(x, y) = x^3 y^2$. Don't worry about if there's a formal method for where H(x, y) comes from for now, just notice that $H_x(x, y) = 3x^2y^2$ and $H_y(x, y) = 2x^3y$. What this means is that the differential equation may be rewritten by undoing the chain rule on the left:

$$\underbrace{3x^2y^2 + 2x^3y\frac{dy}{dx}}_{\frac{d}{dx}[x^3y^2]} = 0$$

So then when the derivative of something is zero, that thing is a constant:

$$\frac{d}{dx} \left[x^3 y^2 \right] = 0$$
$$x^3 y^2 = C$$

and we've solved it, at least implicitly!

2. Definition and Method: A differential equation is *exact* if it has the form:

$$H_x(x,y) + H_y(x,y)\frac{dy}{dx} = 0$$

for some function H(x, y). When a differential equation is exact, solving implicitly is as easy as finding H(x, y) and setting H(x, y) = C for any constant.

Here are a few exact differential equations. For each, H(x, y) is written in the middle and the implicit solution to the right.

Exact DE	H(x,y)	Solution to DE
$y + x\frac{dy}{dx} = 0$	H(x,y) = xy	xy = C
$y + (x + 2y)\frac{dy}{dx} = 0$	$H(x,y) = xy + y^2$	$xy + y^2 = C$
$\frac{1}{y} - \frac{x}{y^2}\frac{dy}{dx} = 0$	$H(x,y) = \frac{x}{y}$	$\frac{x}{y} = C$
$y\cos(xy) + x\cos(xy)\frac{dy}{dx} = 0$	$H(x,y) = \sin(xy)$	$\sin(xy) = C$

3. Detecting Exactness and Finding H: There is a trick to detecting whether a differential equation is exact. If the differential equation has the form:

$$M + N\frac{dy}{dx} = 0$$

then it is exact if and only if $M_y = N_x$. You can test all the ones above. Then you can check that this next one is not exact:

$$xy + y\frac{dy}{dx} = 0$$

In this case $M_y = x$ and $N_x = 0$. Not equal, not exact.

Once you know that your differential equation is exact, often you can guess at H(x, y). However if you're struggling, there's a systematic method for finding it. Here's an example from above:

$$y + (x + 2y)\frac{dy}{dx} = 0$$

We want H(x, y) with (A) $H_x(x, y) = y$ and (B) $H_y(x, y) = x + 2y$. Observe:

We want (A):	$H_x(x,y) = y$
This tells us that:	H(x,y) = xy + h(y)
From this line:	$H_y(x,y) = x + h'(y)$
But from (B):	$H_y(x,y) = x + 2y$
Set these equal:	x + h'(y) = x + 2y
Solve for $h'(y)$:	h'(y) = 2y
Find $h(y)$:	$h(y) = y^2 + D$
Put back into second line:	$H(x,y) = xy + y^2 + D$

We can choose any D so choose D = 0 to get $H(x, y) = xy + y^2$.

Example: Find H(x, y) to solve $x + 1 + \frac{1}{y} - \frac{x}{y^2} \frac{dy}{dx} = 0$. Follow the exact procedure above, here we want (A) $H_x(x, y) = x + 1 + \frac{1}{y}$ and (B) $H_y(x, y) = -\frac{x}{y^2}$:

We want (A):	$H_x(x,y) = x + 1 + \frac{1}{y}$
This tells us that:	$H(x,y) = \frac{1}{2}x^2 + x + \frac{x}{y} + h(y)$
From this line:	$H_y(x,y) = -\frac{x}{u^2} + h'(y)$
But from (B):	$H_y(x,y) = -\frac{x}{y^2}$
Set these equal:	$-\frac{x}{y^2} + h'(y) = -\frac{x}{y^2}$
Solve for $h'(y)$:	h'(y) = 0
Find $h(y)$:	h(y) = D
Put back into second line:	$H(x,y) = \frac{1}{2}x^2 + x + \frac{x}{y} + D$
	0

Then choose D = 0 to get $H(x, y) = \frac{1}{2}x^2 + x + \frac{x}{y}$ and the solution to our DE is $\frac{1}{2}x^2 + x + \frac{x}{y} = C$.

4. Almost Exact: It's not uncommon to have a differential equation which is not quite exact but can be made exact by multiplying through by some function called an *integrating factor*. For example the differential equation

$$2y + x\frac{dy}{dx} = 0$$

is not exact because $M_y = 2$ and $N_x = 1$ so $M_y \neq N_x$. But if we multiply through by x we get the new differential equation

$$2xy + x^2\frac{dy}{dx} = 0$$

which is exact because $M_y = 2x$ and $N_x = 2x$. Now $H(x, y) = x^2 y$ and the solution is $x^2 y = C$. The question is how to come up with this integating factor. This can be challenging but we'll look at two simple cases. The key is that we've got our non-exact differential equation

$$M + N\frac{dy}{dx} = 0$$

and we wish to multiply through by some $\mu(x, y)$ such that the new differential equation

$$M\mu + N\mu \frac{dy}{dx} = 0$$

is exact. To be exact we'd need

$$(M\mu)_y = (N\mu)_x$$
$$M_y\mu + M\mu_y = N_x\mu + N\mu_x$$

While this seems tricky (it's actually a partial differential equation!) we will only encounter the special cases when μ is a function of just x or just y.

The key is to take the above equation and say:

- If μ is a function of only x then $\mu_y = 0$. Rewriting this equation, can we see a $\mu(x)$ which would make this equation true?
- If μ is a function of only y then $\mu_x = 0$. Rewriting this equation, can we see a $\mu(y)$ which would make this equation true?

Note: We will only look at examples where μ is either a function of only x or only y and where μ is easy to figure out visually. Going beyond this can get seriously difficult.

5. Examples:

Example 1: Consider the non-exact differital equation we've seen before:

$$2y + x\frac{dy}{dx} = 0$$

Here M = 2y and N = x. We'd like:

$$M_y\mu + M\mu_y = N_x\mu + N\mu_x$$
$$2\mu + 2y\mu_y = 1\mu + x\mu_x$$

If $\mu = \mu(x)$ then $\mu_y = 0$ and this becomes:

$$2\mu = \mu + x\mu_x$$
$$x\mu_x = \mu$$
$$\mu_x = \frac{\mu}{x}$$

We can see that $\mu(x) = x$ does the job. This is then our integrating factor and we multiply our original differential equation through by it to get the exact differential equation

$$2xy + x^2 \frac{dy}{dx} = 0$$

which has $H(x, y) = x^2 y$ and solution $x^2 y = C$.

Example 2: Consider the non-exact differential equation

$$y + (x + xy)\frac{dy}{dx} = 0$$

Here M = y and N = x + xy. We'd like:

$$M_y \mu + M \mu_y = N_x \mu + N \mu_x$$
$$1\mu + y\mu_y = (1+y)\mu + (x+xy)\mu_z$$

If $\mu = \mu(y)$ then $\mu_x = 0$ and this becomes:

$$1\mu + y\mu_y = (1+y)\mu$$
$$\mu + y\mu_y = \mu + y\mu$$
$$\mu_y = \mu$$

We can see that $\mu(y) = e^y$ does the job. This is then our integrating factor and we multiple our original differential equation through by it to get the exact differential equation:

$$ye^y + (xe^y + xye^y)\frac{dy}{dx} = 0$$

This has $H(x, y) = xye^y$ and solution $xye^y = C$.