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1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even
more. For today we’re going to look at homogeneous higher-order linear DEs, in which the
forcing function f(t) is equal to 0. That is:

First-Order y′ + a(t)y = 0
Second-Order y′′ + a(t)y′ + b(t)y = 0
Third-Order y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0
Etc. Etc.

2. A Motivational Example: Consider the second-order homogeneous linear DE:

y′′ − y′ − 2y = 0

Next look at the two functions, don’t worry about where they came from:

Y1(t) = e2t and Y2(t) = e−t

We can easily see that these are both solutions to the DE by plugging them (and their deriva-
tives) in and checking.

(a) Observation 1 - Getting More Solutions:

Notice that if we take a linear combination of these two, meaning

Y (t) = c1e
2t + c2e

−t

where c1 and c2 are constants. Then we can easily see that this is also a solution to the
DE by plugging it (and its derivatives) in and checking.

(b) Observation 2 - Getting All Solutions:

We can build new solutions from these two but can we build all solutions this way? Well
suppose that we had some solution to the DE, call it Y (t). What we want to know is if
we can find c1 and c2 so that Y (t) = c1e

2t + c2e
−t for this Y (t)?

Well, suppose we find that Y (0) = y0 and Y ′(0) = y1. Since Y ′(t) = 2c1e
2t − c2e

−t we
would need

y0 = Y (0) = c1 + c2

y1 = Y ′(0) = 2c2 − c2

Can we find such values? Since det

[

1 1
2 −1

]

= 0 there is a unique solution.

Notice now that since this is a solution to the IVP and since there is only one solution to
the IVP this must be the solution we were looking for.



(c) Observation 3 - Anything Special About Those Two?

We can’t just start with any two solutions. To see this observe that if we’d started
with Y1(t) = e2t and Y2(t) = 17e2t that both of these are solutions. Again any linear
combination Y (t) = c1e

2t + c217e
2t is a solution. However is every solution to the DE

a linear combination? Again, suppose Y (t) is a solution and Y (0) = y0 and Y ′(0) = y1.
Then Y ′(t) = 2c1e

2t + 34c2e
2t and we would need

y0 = Y (0) = c1 + 17c2

y1 = Y ′(0) = 2c1 + 34c2

Since det

[

1 17
2 34

]

= 0 there may be no solution. That is, we can’t guarantee a solution.

3. Theory:

(a) Theory for Second-Order y′′ + a(t)y′ + b(t)y = 0

• For a second-order homogeneous linear DE we need to find two solutions Y1(t) and
Y2(t) with a special relationship. That relationship is that their Wronskian does not
equal the zero function, where:

W [Y1, Y2] = det

[

Y1 Y2

Y ′

1
Y ′

2

]

Alternately the two solutions cannot be multiples of each other. They form a funda-

mental set or fundamental pair of solutions.

• Every solution is then a linear combination of the fundamental pair. This means the
general solution is Y (t) = c1Y1(t) + c2Y2(t).

• A second-order IVP must provide y(tI) and y′(tI) in order to find the specific solution.

• This solution is unique on the interval of existence which is the largest open interval
on which a(t) and b(t) are differentiable.

(b) Theory for Third-Order y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0

• For a third-order homogeneous linear DE we need to find three solutions Y1(t), Y2(t),
and Y3(t) with a special relationship. That relationship is that their Wronskian does
not equal the zero function, where:

W [Y1, Y2, Y3] = det





Y1 Y2 Y3

Y ′

1
Y ′

2
Y ′

3

Y ′′

1
Y ′′

2
Y ′′

3





Alternately it must be impossible to write one of the solutions as a linear combination
of the others. They form a fundamental set of solutions.

• Every solution is then a linear combination of the fundamental set. This means the
general solution is Y (t) = c1Y1(t) + c2Y2(t) + c3Y3(t).

• A third-order IVP must provide y(tI), y
′(tI), and y′′(tI) in order to find the specific

solution.

• This solution is unique on the interval of existence which is the largest open interval
on which a(t) and b(t) and c(t) are differentiable.

(c) Theory for Higher-Order:

You can probably see the pattern.



4. Practice for Both:

Here are some examples:

Example: Consider y′′ + 4y = 0. First we’ll show that Y1(t) = sin(2t) and Y2(t) = cos(2t)
form a fundamental pair. We check they are solutions (omitted) and we check:

W [Y1, Y2] = det

[

sin(2t) cos(2t)
2 cos(2t) −2 sin(2t)

]

= −2 sin2(2t)− 2 cos2(2t) = −2 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution is:

Y (t) = c1 sin(2t) + c2 cos(2t)

So now if we have the IVP with Y (0) = 4 and Y ′(0) = 2 we can find the specific solution
by first finding:

Y ′(t) = 2c1 cos(2t)− 2c2 sin(2t)

and then solving the system:

4 = Y (0) = c1 sin(2(0)) + c2 cos(2(0)) = c2

2 = Y ′(0) = 2c1 cos(2(0))− 2c2 sin(2(0)) = 2c1

So that c1 = 1 and c2 = 4 and the specific solution is:

Y (t) = sin(2t) + 4 cos(2t)

Example: Consider (1 + t2)y′′ − 2ty′ + 2y = 0. First we’ll show that Y1(t) = t and
Y2(t) = t2 − 1 form a fundamental pair. We check they are solutions (omitted) and we
check:

W [Y1, Y2] = det

[

t t2 − 1
1 2t

]

= 2t2 − (t2 − 1) = t2 + 1 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution is:

Y (t) = c1t+ c2(t
2 − 1)

So now if we have the IVP with Y (2) = −5 and Y ′(2) = 7 we can find the specific solution
by first finding:

Y ′(t) = c1 + 2c2t

and then solving the system:

−5 = Y (2) = c1(2) + c2(2
2 − 1) = 2c1 + 3c2

7 = Y ′(2) = c1 + 2c2(2) = c1 + 4c2

So that c1 = − 41

5
and c2 = − 19

5
and the specific solution is:

Y (t) = −
41

5
t+

19

5
(t2 − 1)



Example: Consider D3y − 2D2y = 0 First we’ll show that Y1(t) = 1, Y2(t) = t and
Y3(t) = e2t form a fundamental set. We check they are solutions (omitted) and we check:

W [Y1, Y2, Y3] = det





1 t e2t

0 1 2e2t

0 0 4e2t



 = 4e2t 6≡ 0

This tells us that Y1(t), Y2(t) and Y3(t) form a fundamental set and that the general solution
is:

Y (t) = c1 + c2t+ c3e
2t

So now if we have the IVP with Y (0) = 1, Y ′(0) = 0 and Y ′′(0) = −4 we can find the
specific solution by first finding:

Y ′(t) = c2 + 2c3e
2t

Y ′′(t) = 4c3e
2t

and then solving the system:

1 = Y (0) = c1 + c3

0 = Y ′(0) = c2 + 2c3

−4 = Y ′′(0) = 4c3

So that c3 = −1, c2 = 2 and c1 = 2 and the specific solution is:

Y (t) = 2 + 2t− e2t



5. More about Fundamental Sets:

(a) Natural Fundamental Sets (OMITTED FOR NOW)

There’s more than just one fundamental set, and one that comes up a lot is called the
natural fundamental set.

In the second-order case this is the set {Y1, Y2} with Y1 having Y1(tI) = 1 and Y ′

1
(tI) = 0

and with Y2 having Y2(tI) = 0 and Y ′

2
(tI) = 1.

In the third-order case this is the set {Y1, Y2, Y3} with Y1 having Y1(tI) = 1, Y ′

1
(tI) = 0,

and Y ′′

1
(tI) = 0, with Y2 having Y2(tI) = 0, Y ′

2
(tI) = 1, and Y ′′

2
(tI) = 0, and with Y3

having Y3(tI) = 1, Y ′

3
(tI) = 0, and Y ′′

3
(tI) = 1,

Beyond there you can probably see the pattern.

(b) Reduction of Order (OMITTED)

The big question of course is where the fundamental set comes from. We’ll address that
a bit later but for now we have one helper.

If we have one solution Y1(t) then the second one is very often a multiple of the first.
So we can set Y2(t) = uY1(t) and when we plug this into the DE and use the fact that
Y1(t) is a solution we end up in a situation where we can find a first-order DE (hence the
name) that we can use to find u.

Example: You can check that Y1(t) = e5t is a solution to y′′ − 3y′ − 10y = 0. To find the
other by reduction of order we put Y2(t) = ue5t. We then find

Y ′

2
(t) = u′e5t + 5ue5t and

Y ′′

2
(t) = u′′e5t + 5u′e5t + 5u′e5t + 25ue5t = u′′e5t + 10u′e5t + 25ue5t

and plug these into the DE:

y′′ − 3y′ − 10y = 0

(u′′e5t + 10u′e5t + 25ue5t)− 3(u′e5t + 5ue5t)− 10(ue5t) = 0

u′′ + 10u′ + 25u− 3u′ − 15u− 10u = 0

u′′ + 7u′ = 0

If we let w = u′ then this gives us w′ + 7w = 0 which has solution w = Ce−7t and so
u′ = Ce−7t and so u = − 1

7
Ce−7t +D and another solution is

Y2(t) =

(

−
1

7
Ce−7t +D

)

e5t = −
1

7
Ce−2t +De5t

Since this is true for any C and D we can pick the solution

Y2(t) = e−2t

for which W [Y1, Y2] 6≡ 0 and we have our fundamental pair.


