MATH 246: Chapter 2 Section 2
Justin Wyss-Gallifent

1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even
more. For today we're going to look at homogeneous higher-order linear DEs, in which the
forcing function f(t) is equal to 0. That is:

First-Order y +alt)y=0

Second-Order Yy +a(t)y +b(t)y=0
Third-Order y" +alt)y" +0(t)y +c(t)y=0
Etc. Etc.

2. A Motivational Example: Consider the second-order homogeneous linear DE:

y' '~y —2y=0

Next look at the two functions, don’t worry about where they came from:

Yi(t) = et and Ya(t) = e~?

We can easily see that these are both solutions to the DE by plugging them (and their deriva-
tives) in and checking.

(a)

Observation 1 - Getting More Solutions:
Notice that if we take a linear combination of these two, meaning

Y(t) = Clegt + Cge_t

where ¢; and co are constants. Then we can easily see that this is also a solution to the
DE by plugging it (and its derivatives) in and checking.

Observation 2 - Getting All Solutions:

We can build new solutions from these two but can we build all solutions this way? Well
suppose that we had some solution to the DE, call it Y(¢). What we want to know is if
we can find ¢; and ¢y so that Y (t) = c1e? + coe™? for this Y (£)?

Well, suppose we find that Y(0) = yo and Y'(0) = y;. Since Y'(t) = 2c1e?’ — coe™! we
would need

Yo = Y(O) =c1 + Co
Y1 = Y/(O) = 202 — Co

Can we find such values? Since det B _11} = 0 there is a unique solution.

Notice now that since this is a solution to the IVP and since there is only one solution to
the IVP this must be the solution we were looking for.



(c) Observation 3 - Anything Special About Those Two?
We can’t just start with any two solutions. To see this observe that if we’d started
with Y;(#) = €? and Ya(t) = 17¢?" that both of these are solutions. Again any linear
combination Y () = c1€?" + c217e% is a solution. However is every solution to the DE
a linear combination? Again, suppose Y (¢) is a solution and Y (0) = yo and Y’ (0) = y;.
Then Y'(t) = 2c1e?t + 34c0e? and we would need

Yo = Y(O) =c1+ 17¢co
Y1 = Y/(O) = 201 + 3462
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Since det [2 34

} = (0 there may be no solution. That is, we can’t guarantee a solution.

3. Theory:

(a) Theory for Second-Order y” + a(t)y’ + b(t)y =0

e For a second-order homogeneous linear DE we need to find two solutions Yi(t) and
Y5(t) with a special relationship. That relationship is that their Wronskian does not
equal the zero function, where:

WYh, Ya] = det [Yl Y]

i Y;
Alternately the two solutions cannot be multiples of each other. They form a funda-
mental set or fundamental pair of solutions.
e Every solution is then a linear combination of the fundamental pair. This means the
general solution is Y (t) = ¢1 Y1 (t) + c2Ya(2).
e A second-order IVP must provide y(t;) and y'(¢;) in order to find the specific solution.
e This solution is unique on the interval of existence which is the largest open interval
on which a(t) and b(t) are differentiable.
(b) Theory for Third-Order y" + a(t)y” + b(t)y + c(t)y =0
e For a third-order homogeneous linear DE we need to find three solutions Y; (), Ya(¢),
and Y3(t) with a special relationship. That relationship is that their Wronskian does
not equal the zero function, where:

Y Y2 Y3
WYi, Ve, Ya] = det | Y] Y] Vi
i Yy Y

Alternately it must be impossible to write one of the solutions as a linear combination
of the others. They form a fundamental set of solutions.

e Every solution is then a linear combination of the fundamental set. This means the
general solution is Y (t) = ¢1Y1(¢) 4+ c2Ya(t) + e3Y5(2).

e A third-order IVP must provide y(¢;), ¥'(¢1), and y”(¢;) in order to find the specific
solution.

e This solution is unique on the interval of existence which is the largest open interval
on which a(t) and b(t) and ¢(t) are differentiable.

(c) Theory for Higher-Order:
You can probably see the pattern.



4. Practice for Both:

Here are some examples:

Example: Consider y” 4+ 4y = 0. First we’ll show that Y7 (¢) = sin(2t) and Ya(¢) = cos(2t)
form a fundamental pair. We check they are solutions (omitted) and we check:

B sin(2t) cos(2t) | _ 5. 20, 2 _
W1Y:,Ys] = det 2cos(2t) —2sin(2t)| 2sin*(2t) — 2cos*(2t) = —2#0

This tells us that Y3(¢) and Ya2(¢) form a fundamental pair and that the general solution is:
Y (t) = ¢ sin(2t) + co cos(2t)

So now if we have the IVP with ¥'(0) = 4 and Y’(0) = 2 we can find the specific solution
by first finding:
Y'(t) = 2¢; cos(2t) — 2cq sin(2t)

and then solving the system:

4 =Y(0) = c18in(2(0)) + c2 cos(2(0)) = co
2 =Y'(0) = 2¢; cos(2(0)) — 2¢o sin(2(0)) = 2¢1

So that ¢; = 1 and ¢ = 4 and the specific solution is:

Y (t) = sin(2t) 4 4 cos(2t)

Example: Consider (1 + t2)y” — 2ty’ + 2y = 0. First we’ll show that Y;(t) = ¢ and
Y2(t) = t2 — 1 form a fundamental pair. We check they are solutions (omitted) and we

check:
t

W[Yl,YQ] = det |:1

t? -1 2 (42 2
of =27 —(t°-1)=t*+1#£0
This tells us that Y7(¢) and Y2(¢) form a fundamental pair and that the general solution is:
Y (t) = it + e (t? — 1)

So now if we have the IVP with Y (2) = —5 and Y’/(2) = 7 we can find the specific solution
by first finding;:
Y/(t) =cC1 + 262t

and then solving the system:
—5=Y(2) = c1(2) + c2(2% — 1) = 2¢1 + 3¢z
T=Y'(2) =c1 +2¢2(2) = ¢1 + 4eo

So that ¢; = —4—51 and ¢y = —

19

= and the specific solution is:

41 1
Y(t)=-—t+ gg(t2 —1)



Example: Consider D3y — 2D?y = 0 First we’ll show that Yi(t) = 1, Ya(t) = t and
Y3(t) = €' form a fundamental set. We check they are solutions (omitted) and we check:

1t e
WIY1,Ys, V3] =det [0 1 2e%| =4e? #0
0 0 d4e2t

This tells us that Y7 (), Y2(¢) and Y3(t) form a fundamental set and that the general solution
is:
Y (t) = ¢1 + cot + cze*

So now if we have the IVP with Y (0) = 1, Y’(0) = 0 and Y”(0) = —4 we can find the
specific solution by first finding:

Y'(t) = co + 2cze?
Y"(t) = 4cze®

and then solving the system:

1=Y(0)=c1 +c3
0= Y/(O) = c9 + 2c3
—4=Y"(0) = 4c3

So that ¢ = —1, co = 2 and ¢; = 2 and the specific solution is:

Y(t)=2+2t —e*



5. More about Fundamental Sets:

(a) Natural Fundamental Sets (OMITTED FOR NOW)

There’s more than just one fundamental set, and one that comes up a lot is called the
natural fundamental set.
In the second-order case this is the set {Y7,Y2} with Y] having Y3 (¢7) = 1 and Y{(t;) =0
and with Y2 having Ya(¢7) = 0 and Y3 (¢;) = 1.
In the third-order case this is the set {Y7, Y, Y3} with Y7 having Y1 (¢;) =1, Y{(¢7) = 0,
and Y{'(t;) = 0, with Y2 having Y2(¢;) = 0, Y3(¢;) = 1, and Y5'(¢;) = 0, and with Y3
having Y3(t;) =1, Y{(t;) = 0, and Y3'(¢;) = 1,
Beyond there you can probably see the pattern.

(b) Reduction of Order (OMITTED)

The big question of course is where the fundamental set comes from. We’ll address that
a bit later but for now we have one helper.

If we have one solution Yi(t) then the second one is very often a multiple of the first.
So we can set Y2(t) = uY7(¢) and when we plug this into the DE and use the fact that
Y1 (t) is a solution we end up in a situation where we can find a first-order DE (hence the
name) that we can use to find u.

Example: You can check that Y;(t) = € is a solution to y” — 3y’ — 10y = 0. To find the
other by reduction of order we put Y5(t) = ue®. We then find

Yy (t) = u'e® + buedt and
Yy (t) = u”edt + bu’e® + 5u/edt 4 25uedt = u’edt + 100’ et + 25uedt

and plug these into the DE:
y' =3y —10y =0
(u” e + 10u’e® + 25ue®) — 3(u'e® + 5uet) — 10(ue') = 0
u” 4+ 10w’ + 25u — 3u’ — 15u — 10u = 0
w'+7u =0

t

If we let w = u' then this gives us w’ + 7w = 0 which has solution w = Ce~"* and so

w = Ce ™ and so u = —%Ce’” + D and another solution is
| p— 5t 1, o 5t
Ya(t) = f?C’e +De :f?C’e + De

Since this is true for any C' and D we can pick the solution
}/g(t) — 67216

for which WY1, Ys] # 0 and we have our fundamental pair.



