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1. Introduction

Important: Positive is up and negative is down.

Imagine a spring hanging with no weight on it. We then attach a mass m which stretches
the spring a distance of yR < 0. We are now at the rest point. At this point the force of
gravity is mg (negative since g < 0, think g = −9.8 if it helps) and the force of the spring by
Hooke’s Law is −kyR (the spring force is upwards so we negate against yR < 0). Consequently
mg + (−kyR) = 0 and so mg = kyR.

Now then, imagine the object and spring system is in motion and at any time t the displacement
from the rest point is given by y(t). At any instant now there could be multiple forces acting
on the object:

Gravity mg Acting downwards with g < 0.
Spring −k(y + yR) Acting against the displacement.
Damping −γy′ Acting against and proportional to velocity, here γ > 0.
External f(t) Some other external force.

When we put these all together we get:

FTot = FGrav + FSpring + FDamping + FExternal

my′′ = mg − k(y + yR)− γy′ + f(t)

my′′ = kyr − ky − kyR − γy′ + f(t)

my′′ = −ky − γy′ + f(t)

We finall rewrite this as:

my′′ + γy′ + ky = f(t)

If this doesn’t look familiar then you’ve been asleep for several weeks!

2. A Few Notes

(a) In the Metric system we may either have length, time, mass and force in meters, seconds,
kilograms and newtons (newton = kg ·meter/s2) respectively, or in centimeters, seconds,
grams and dynes (dyne = g ·cm/s2) respectively. In the British system we may have feet,
seconds, slugs and pounds (lb = slug ·ft/s2). Note also in the British system that weight
is also in pounds with lb = slug · gravity.

(b) If k is not given we may need to find it using mg = kyR. We would be given the mass m
of the object and the displacement yR. We can then find k. For example if an object of
mass 2 kilograms displace a spring 0.5 meters downwards then (2)(−9.8) = k(−0.5).

(c) If γ is not given we may need to find it using FDamping = γy′. We would be given the
damping force for a certain velocity. For example if a mass traveling at 0.1m/s upwards
invokes a damping force of 0.3N downwards then −0.3 = −γ(0.1).



3. Unforced and Undamped

The simplest situation is when there is no external force and no damping. In this case we have

my′′ + ky = 0. The characteristic polynomial has roots 0± i
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by
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This can be rewritten using the Subtraction Formula for Cosine as

y(t) = A cos
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where A =
√
c1 + c2 is the amplitude and δ satisfies cos δ = c1

A
and sin δ = c2

A
. The graph of

this makes good sense for a spring that’s bouncing up and down forever.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1. It is pulled down
0.2m from resting and released at a rate of 0.3m/s downwards.

We have 0.4y′′ + 0.1y = 0 or y′′ + 0.25y = 0 with y(0) = −0.2 and y′(0) = −0.3.

The characteristic polynomial has roots 0± i
√

0.1
0.4 = 0± 0.5i. The general solution is then

y(t) = c1 cos 0.5t+ c2 sin 0.5t

For the initial value observe y′(t) = −0.5c1 sin 0.5t+ 0.5c2 cos 0.5t and so y(0) = c1 = −0.2
and y′(0) = 0.5c2 = −0.3 so c2 = −0.6. This gives us the specific solution

y(t) = −0.2 cos 0.5t− 0.6 sin 0.5t

The amplitude is A =
√

(−0.2)2 + (0.6)2 =
√
0.4 ≈ 0.63 We can even draw a nice sketch.

Sketch omitted, but this starts at (0. − 0.2) with a slope of −0.3 and settles into a regular
oscillation.



4. Unforced with Damping

Now we have my′′ + γy′ + ky = 0. The characteristic polynomial has roots − γ
2m ±

√
γ2−4mk

2m .
the behavior of this depends strongly on γ2 − 4mk.

(a) Underdamped: When γ2−4mk < 0 (meaning the damping coefficient is small) we have
complex roots and our solution has both exponential and trigonometric components. The
function starts out oscillating but then the amplitude drops, limiting to zero.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.15. It is pulled down 0.2m from resting and released at a rate of
0.3m/s downwards.

We have 0.4y′′ + 0.15y′ + 0.1y = 0 or y′′ + 0.375y′ + 0.25y = 0 with y(0) = −0.2 and
y′(0) = −0.3.

The characteristic polynomial has roots z =
−0.15±

√
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2(0.4) = −0.1875±
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The general solution is then

y(t) = c1e
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The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0.−0.2) with a slope of −0.3 and settles into an oscillation
wich reduces over time and limits to zero.



(b) Critically Damped: When γ2 − 4mk = 0 we have a real root of multiplicity two. This
is the special critically damped case. It corresponds to the smallest possible γ for which
the oscillation stops.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.15625 in a fluid with
damping coefficient γ = 0.5. It is pulled down 0.7m and released with zero velocity.

We have 0.4y′′ + 0.5y′ + 0.15625y = 0 or y′′ + 1.25y′ + 0.390625y = 0 with y(0) = −0.7 and
y′(0) = 0.

The characteristic polynomial z2 + 1.25y + 0.390625 has a single root of multiplicity 2 as it
factors as (z + 0.625)2. The general solution is then

y(t) = c1e
−0.625t + c2te

−0.625t

The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0.− 0.7) with a slope of 0 and heads directly but asymp-
totically to the t-axis.



(c) Overdamped: When γ2−4mk > 0 we have two real roots and the system is overdamped.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.5. It is pushed up 0.6m and released with zero velocity.

We have 0.4y′′ + 0.5y′ + 0.1y = 0 or y′′ + 1.25y′ + 0.25y = 0 with y(0) = 0.6 and y′(0) = 0.

The characteristic polynomial z2 + 1.25y + 0.25 factors as (z + 1)(z + 0.25) with roots
−1,−0.25 and hence the general solution is then

y(t) = c1e
−t + c2e

−0.25

For the initial value observe y′(t) = −c1e
−t − 0.25c2e

−0.25t and so y(0) = c1 + c2 = 0.6 and
y′(0) = −c1− 0.25c2. This yields c2 = 0.8 and c1 = −0.2. This gives us the specific solution

y(t) = −0.2e−t + 0.8e−0.25t

We can even draw a nice sketch.

Sketch omitted, but this starts at (0.0.6) with a slope of 0 and heads directly but asymp-
totically to the t-axis.

(d) A Note on Critically Damped vs. Overdamped: These two functions look very
similar. The critical thing to note is that a damped system oscillates, an overdamped
system doesn’t, and a critically damped system doesn’t either but lies right on the edge
of the other two.



5. Forced

With forced motions f(t) 6= 0 and all bets are off. We know we need to find a particular
solution Yp and then add the general solution to the homogeneous system. This makes sense
because the system is governed by both that forcing function and the usual spring motion stuff.
In general the behavior will look springy at the start, although the damping might suppress
this a bit, and in the long term (assuming damping) will look as if only the forcing function is
acting on it.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.15. It is pulled up 0.2m from resting and released at a rate of
0.3m/s downwards. An additional external force f(t) = 0.3 acts downwards on it.

We have 0.4y′′ + 0.15y′ + 0.1y = −0.3 or y′′ + 0.375y′ + 0.25y = −0.75 with y(0) = −0.2
and y′(0) = −0.3.

The Method of Undetermined Coefficients gives us one solution Yp(t) = 3. The homogeneous
version is an earlier problem with general solution
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and hence the general solution to our forced problem is

Y (t) = −3 + c1e
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Notice that in the long term the exponentials take complicated part to zero so that
lim
t→∞

Y (t) = 3. So in the long term only the forcing function remains acting on it.

The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0, 0.2) with slope −0.3 and oscillates with reducing
amplitude as it settles down and limits to y = −3.


