MATH 246: Chapter 3 section 2 Basic Theory Justin Wyss-Gallifent

1. Notation for Systems of First Order Linear DEs

Using matrix notation, a system like this:

$$
\begin{aligned}
& x_{1}^{\prime}=3 x_{1}+2 t x_{2}+t \\
& x_{2}^{\prime}=t^{2} x_{1}+3 x_{2}
\end{aligned}
$$

can be rewritten like this:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 t \\
t^{2} & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

or even further as:

$$
\bar{x}^{\prime}=\left[\begin{array}{cc}
3 & 2 t \\
t^{2} & 3
\end{array}\right] \bar{x}+\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

The advantage is then that a solution to the system is now a single \bar{x} rather than two function x_{1} and x_{2}.
Whenever we have

$$
\bar{x}^{\prime}=A(t) \bar{x}+\bar{f}(t)
$$

then a homogeneous system has $\bar{f}(t)=\overline{0}$ and the system has constant coefficients then this means the matrix A is all constants.
An initial value can then be written as $\bar{x}\left(t_{I}\right)=\bar{x}_{I}$, so for example if we had the initial value $x_{1}(0)=3, x_{2}(0)=-2$ we could combine these as $\bar{x}(0)=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.
Example: Rewrite the IVP:

$$
\begin{array}{ll}
x_{1}^{\prime}=t x_{1}+x_{2}+t & x_{1}(1)=4 \\
x_{2}^{\prime}=5 x_{1}-7 x_{2} & x_{2}(1)=-1
\end{array}
$$

in matrix/vector form.
Solution: It's just:

$$
\bar{x}^{\prime}=\left[\begin{array}{cc}
t & 1 \\
5 & -7
\end{array}\right] \bar{x}+\left[\begin{array}{l}
t \\
0
\end{array}\right] \text { with } \bar{x}(1)=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

2. Theory for Homogeneous - Fundamental Sets

(a) Note: In what follows I've written $n=2$ to mean that I'm giving a specific example that generalizes. You could substitute $n=3,4, \ldots$ and the theory would still be good. In cases where it's not clear what happens for $3,4, \ldots$ I've said more.
(b) Recall: A single solution to a system of $n=2$ DEs involves a single \bar{x}. This single \bar{x} really represents $n=2$ functions, x_{1} and x_{2} (more if $n \geq 3$), but it's easier to understand as just one \bar{x}.
Example: The system $\bar{x}^{\prime}=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right] \bar{x}$ has solution $\bar{x}=\left[\begin{array}{l}e^{5 t} \\ e^{5 t}\end{array}\right]$
(c) Fundamental Sets: A homogeneous system of $n=2$ DEs has a fundamental set consisting of $n=2$ solutions \bar{x}_{1} and \bar{x}_{2} (more if $n \geq 3$) The general solution to the system then consists of all linear combination of those $n=2$ solutions. A fundamental set has nonzero Wronskian where

$$
W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\operatorname{det}\left[\begin{array}{ll}
\bar{x}_{1} & \left.\bar{x}_{2}\right]
\end{array}\right.
$$

That determinant is just found by dumping the vectors \bar{x}_{1} and \bar{x}_{2} together in in a matrix and going from there.
Example 1: The system $\bar{x}^{\prime}=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right] \bar{x}$ has solutions $\bar{x}_{1}=\left[\begin{array}{c}e^{5 t} \\ e^{5 t}\end{array}\right]$ and $\bar{x}_{2}=\left[\begin{array}{c}e^{t} \\ -e^{t}\end{array}\right]$. These form a fundamental pair because $W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\operatorname{det}\left[\begin{array}{cc}e^{5 t} & e^{t} \\ e^{5 t} & -e^{t}\end{array}\right]=-2 e^{6 t} \neq 0$. Consequently the general solution to the system is $\bar{x}=c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}=c_{1}\left[\begin{array}{c}e^{5 t} \\ e^{5 t}\end{array}\right]+c_{2}\left[\begin{array}{c}e^{t} \\ -e^{t}\end{array}\right]$.

Example 2: The system $\bar{x}^{\prime}=\left[\begin{array}{cc}t^{2} & 2 t-t^{4} \\ 1 & -t^{2}\end{array}\right] \bar{x}$ has solutions $\bar{x}_{1}=\left[\begin{array}{c}1+t^{3} \\ t\end{array}\right]$ and $\bar{x}_{2}=\left[\begin{array}{c}t^{2} \\ 1\end{array}\right]$. These form a fundamental pair because $W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\operatorname{det}\left[\begin{array}{cc}1+t^{3} & t^{2} \\ t & 1\end{array}\right]=1 \neq 0$. Consequently the general solution to the system is $\bar{x}=c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}=c_{1}\left[\begin{array}{c}1+t^{3} \\ t\end{array}\right]+c_{2}\left[\begin{array}{c}t^{2} \\ 1\end{array}\right]$.

3. A Bit More Notation and Such

(a) The Fundamental Matrix:

The fundamental set is often put together in a matrix by lining up the columns and called the fundamental matrix. This is usually denoted Ψ or $\Psi(t)$.

Example 1 and 2 Again:

In example 1 we have: $\Psi(t)=\left[\begin{array}{cc}e^{5 t} & e^{t} \\ e^{5 t} & -e^{t}\end{array}\right]$
In example 2 we have: $\Psi(t)=\left[\begin{array}{cc}1+t^{3} & t^{2} \\ t & 1\end{array}\right]$.
(b) The Natural Fundamental Solutions and Natural Fundamental Matrix for a given time:

If we solve the two initial value problems:

$$
\bar{x}^{\prime}=A \bar{x} \text { with } \bar{x}\left(t_{I}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and

$$
\bar{x}^{\prime}=A \bar{x} \text { with } \bar{x}\left(t_{I}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

we get what are known together as the natural fundamental set associated to t_{I} and if we put these together in a matrix we get the natural fundamental matrix associated to t_{I} which is denoted Φ. There is only one of these for a given t_{I}.
This matrix Φ is very handy because if we are trying to solve an initial value problem with initial value $\bar{x}\left(t_{I}\right)=\bar{x}_{I}$ then the solution to the initial value problem is $\bar{x}=\Phi \bar{x}_{I}$.
Even better if for some reason we already have any fundamental matrix Ψ then we can find Φ for a given t_{I} via $\Phi=\Psi(t) \Psi\left(t_{I}\right)^{-1}$.

Example 1 Again:

The system:

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}
$$

we saw has fundamental matrix:

$$
\Psi(t)=\left[\begin{array}{cc}
e^{5 t} & e^{t} \\
e^{5 t} & -e^{t}
\end{array}\right]
$$

Suppose we wish to solve the IVP with $\bar{x}(0)=\left[\begin{array}{c}4 \\ -2\end{array}\right]$.
We first find Φ by doing the following:

$$
\begin{aligned}
\Phi & =\Psi(t) \Psi(0)^{-1} \\
& =\left[\begin{array}{cc}
e^{5 t} & e^{t} \\
e^{5 t} & -e^{t}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
e^{5 t} & e^{t} \\
e^{5 t} & -e^{t}
\end{array}\right] \frac{1}{-2}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
e^{5 t}+e^{t} & e^{5 t}-e^{t} \\
e^{5 t}-e^{t} & e^{5 t}+e^{t}
\end{array}\right]
\end{aligned}
$$

Then the solution to the IVP is given by:

$$
\bar{x}=\Phi \bar{x}_{I}=\frac{1}{2}\left[\begin{array}{ll}
e^{5 t}+e^{t} & e^{5 t}-e^{t} \\
e^{5 t}-e^{t} & e^{5 t}+e^{t}
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
e^{5 t}+3 e^{t} \\
e^{5 t}-3 e^{t}
\end{array}\right]
$$

Example:

The system:

$$
\bar{x}^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \bar{x}
$$

has fundamental matrix:

$$
\Psi(t)=\left[\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right]
$$

Suppose we wish to solve the IVP with $\bar{x}(0)=\left[\begin{array}{l}2 \\ 7\end{array}\right]$.
We first find Φ by doing the following:

$$
\begin{aligned}
\Phi & =\Psi(t) \Psi(0)^{-1} \\
& =\left[\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right] \frac{1}{-1}\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right]
\end{aligned}
$$

Then the solution to the IVP is given by:

$$
\bar{x}=\Phi \bar{x}_{I}=\left[\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right]\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{c}
2 \cos x+7 \sin x \\
-2 \sin x+7 \cos x
\end{array}\right]
$$

(c) Nonhomogenous Systems

The general idea here will be exactly the same as before. We will find the fundamental set for the homogeneous system and just one particular solution \bar{x}_{p} for the nonhomogeneous system. We will then add \bar{x}_{p} plus all linear combinations of the fundamental set. More on this later, nothing to obsess over yet.

