MATH 246: Chapter 3 section 3 Matrix and Vector Essentials

 Justin Wyss-Gallifent
1. Introduction:

It's far easier to manage systems of differential equations when we can rephrase them in the language of matrices and vectors. To that end, here are the essentials.

2. Basic Definitions:

(a) A matrix is a rectangular array of numbers. It has size $m \times n$ if there are m rows and n columns. Matrices are typically denoted using capital letters:
Example: Here is a 3×4 matrix:

$$
A=\left[\begin{array}{cccc}
1 & 3 & -1 & 0 \\
0 & 5 & 0 & 17 \\
2 & 2 & -7 & 3
\end{array}\right]
$$

(b) Most of the matrices in this class will be square, meaning they have the same number of rows and columns. Mostly we'll deal with 2×2 and 3×3 matrics.
(c) The identity matrix I_{n} is the square $n \times n$ matrix with 1 s on the main diagonal (upper-left to lower right) and 0's elsewhere. When the size is clear from context we just write I.
Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(d) The zero matrix is matrix of all zeros.
(e) A vector is a matrix which is a single column. Vectors are usually denoted in lower-case with a bar over the letter.

$$
\text { Example: } \bar{a}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]
$$

3. Combining Matrices and Vectors:
(a) We can add matrices and vectors by adding matching entries provided they both have the same size.
Example: For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
6 & 2
\end{array}\right]=\left[\begin{array}{ll}
1-1 & 2+0 \\
3+6 & 4+2
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
9 & 8
\end{array}\right]
$$

(b) We can multiple an $n \times n$ matrix A by a vector \bar{x} with n entries to get a new vector with n entries. We do this by multiplying each row of the matrix by the vector (element by element and add). This is easier to see:

Example: We have:

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 4 & 7 \\
8 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
(1)(5)+(2)(3)+(-3)(2) \\
(0)(5)+(4)(3)+(7)(2) \\
(8)(5)+(-1)(3)+(5)(2)
\end{array}\right]=\left[\begin{array}{c}
5 \\
26 \\
47
\end{array}\right]
$$

(c) We can multiple an $n \times n$ matrix by another $n \times n$ matrix by multiplying the first matrix by each of the columns in the second matrix as if it were just a vector, then taking these new vectors an putting them together in a new matrix.
Example: Here it is with lots of brackets to help you see what's going on:

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
5 & 9
\end{array}\right] } & =\left[\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
5
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
9
\end{array}\right]\right] \\
& \left.=\left[\begin{array}{l}
(2)(-1)+(1)(5) \\
(4)(-1)+(3)(5)
\end{array}\right]\left[\begin{array}{l}
(2)(3)+(1)(9) \\
(4)(3)+(3)(9)
\end{array}\right]\right] \\
& =\left[\begin{array}{ll}
3 & 15 \\
9 & 39
\end{array}\right]
\end{aligned}
$$

(d) It's almost always the case that for matrices A and B that $A B \neq B A$.
(e) The identity matrix acts like the number 1 in that for any matrix A we have:

$$
A I=I A=A
$$

4. Inverses:

(a) The inverse of an $n \times n$ matrix A is another matrix denoted A^{-1} such that $A A^{-1}=A^{-1} A=I$. It's like a "reciprocal" for matrics.
(b) For the 2×2 size there is a formula:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example: For example:

$$
\left[\begin{array}{cc}
1 & 3 \\
2 & -2
\end{array}\right]^{-1}=\frac{1}{(1)(-2)-(3)(2)}\left[\begin{array}{cc}
2 & -3 \\
1 & 2
\end{array}\right]=\frac{1}{-8}\left[\begin{array}{cc}
2 & -3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 / 4 & 3 / 8 \\
-1 / 8 & -1 / 4
\end{array}\right]
$$

(c) Properties include:

- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$

5. Determinants:

(a) The determinant of a matrix, $\operatorname{denoted} \operatorname{det} A$, is a number calculated from the matrix. We've seen this for 2×2 and 3×3 matrices.
(b) Properties include:

- A matrix A has an inverse if and only if $\operatorname{det} A \neq 0$.
- For a 2×2 case $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$.
- We have $\operatorname{det}\left(A^{-1}\right)=1 /(\operatorname{det} A)$.

6. Minutia:

(a) The transpose of an $n \times n$ matrix A, denoted A^{T}, is found by reflecting the matrix in its main diagonal.
Example: We have:

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 4 & 7 \\
8 & -1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & 0 & 8 \\
2 & 4 & -1 \\
-3 & 7 & 5
\end{array}\right]
$$

(b) A matrix may have complex numbers in it, in which case its comples conjugate denoted either \bar{A} or A^{c}, is found by taking the complex conjugate of each entry.
Example: We have:

$$
\left[\begin{array}{cc}
1-2 i & 5 \\
5+i & 7+8 i
\end{array}\right]^{C}=\left[\begin{array}{cc}
1+2 i & 5 \\
5-i & 7-8 i
\end{array}\right]
$$

