
MATH 246: Chapter 3 sections 3 and 4

Justin Wyss-Gallifent

1. A Funny Suggestion:

Recall the really easy solution to a single first-order linear homogeneous differential equation with
constant coefficients:

y′ = ay =⇒ y = eat

It would be rather hilarious if the same were true of systems, meaning if we have a system of
first-order linear homogeneous differential equations with constant coefficients:

x̄′ = Ax̄ =⇒ y = etA
︸ ︷︷ ︸

LOL

The issue is that it’s not clear to us that etA can make any sense at all when A is an n×n matrix.

However it can and the reason is as follows - recall that the Taylor Expansion of ex tells us:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + ...

We can define a matrix exponential similarly:

etA = 1 + (tA) +
1

2!
(tA)2 +

1

3!
(tA)3 + ... = 1 + ta+

1

2!
t2A2 +

1

3!
t3A3 + ...

This makes sense, mathematically, and in fact it converges, but we won’t show that here.

Interestingly using this definition the matrix etA does give us all the solutions to x̄′ = Ax̄ in that
the columns of etA form a fundamental set of solutions but it’s sort of useless because knowing the
series expansion above doesn’t help us actually calculate it.

So the question then becomes - can we find etA some other way?



2. Eigenstuff:

If we have a matrix, the determinant is the most important number associated to it. After the
determinant the next most important items are eigenvalues and eigenvectors.

(a) If A is an n × n matrix, an eigenvalue of A is a number λ with the property that there is
some v̄ 6= 0̄ such that Av̄ = λv̄. The vector v̄ is then an eigenvector associated to λ and we
say that (λ, v̄) is an eigenpair of A.

Example: Observe that:
[
2 1
1 2

] [
1
1

]

=

[
3
3

]

= 3

[
1
1

]

so we would say that λ = 3 is an eigenvalue,

[
1
1

]

is an eigenvector and

(

3,

[
1
1

])

is an

eigenpair for the matrix

[
2 1
1 2

]

.

(b) Any nonzero multiple of an eigenvector is also an eigenvector, so in the above example

[
2
2

]

,
[
17
17

]

and

[
−7
−7

]

are all eigenvectors for the same eigenvalue.

(c) If we have a complex eigenpair (λ, v̄) then (λ̄, ¯̄v) is also an eigenpair.

(d) Finding eigenpairs will be essential to solving systems of linear homogeneous differential equa-
tions with constant coefficients. The process to finding these is theorically straightfoward and
a bit calculationally awkward. We’ll focus on the 2× 2 case and do higher cases via Matlab.

(e) Given an n× n matrix A, the characteristic polynomial of A is defined as

p(z) = det(zI −A)

The eigenvalues of A are the roots of this characteristic polynomial.

Example: To find the eigenvalues of

A =

[
3 2
2 3

]

we find

p(z) = det(zI −A)

= det

(

z

[
1 0
0 1

]

−

[
3 2
2 3

])

= det

([
z 0
0 z

]

−

[
3 2
2 3

])

= det

[
z − 3 −2
−2 z − 3

]

= (z − 3)(z − 3)− 4

= z2 − 6z + 5

= (z − 5)(z − 1)

The eigenvalues are then the roots so λ1 = 5 and λ2 = 1.



Example: To find the eigenvalues of

A =

[
4 −1
1 2

]

we find

p(z) = det(zI −A)

= det

(

z

[
1 0
0 1

]

−

[
4 −1
1 2

])

= det

([
z 0
0 z

]

−

[
4 −1
1 2

])

= det

[
z − 4 1
−1 z − 2

]

= (z − 4)(z − 2) + 1

= z2 − 6z + 9

= (z − 3)2

The only eigenvalue is the root λ = 3. However this multiplicity counts, so we can think
λ1 = 3 and λ2 = 3.

Example: To find the eigenvalues of

A =

[
3 2
−2 3

]

we find

p(z) = det(zI −A)

= det

(

z

[
1 0
0 1

]

−

[
3 2
−2 3

])

= det

([
z 0
0 z

]

−

[
3 2
−2 3

])

= det

[
z − 3 −2
2 z − 3

]

= (z − 3)(z − 3) + 4

= z2 − 6z + 13

This does not factor so we use the quadratic formula:

z =
6±

√

(−6)2 − 4(1)(13)

2
= 3± 2i

The eigenvalues are then λ1 = 3 + 2i and λ2 = 3− 2i.



(f) Once we find the eigenvalues we take each eigenvalue and solve the matrix equation Av̄ = λv̄,
or Av̄ − λv̄ = 0̄, or (A− λI)v̄ = 0̄. This can be fairly intensive for large cases. For the 2× 2
case there is a trick, though, which is really useful:

For λ1 choose any nonzero column of A− λ2I.
For λ2 choose any nonzero column of A− λ1I.

Example: We saw that the eigenvalues for A =

[
3 2
2 3

]

are λ1 = 5 and λ2 = 1. Then:

For λ1 = 5 choose any nonzero column of A − λ2I = A − 1I =

[
3 2
2 3

]

−

[
1 0
0 1

]

=

[
2 2
2 2

]

so

[
2
2

]

will do. However since any multiple of this works, we can pick the nicer v̄1 =

[
1
1

]

.

For λ2 = 1 choose any nonzero column of A−λ1I = A−5I =

[
3 2
2 3

]

−

[
5 0
0 5

]

=

[
−2 2
2 −2

]

so

[
−2
2

]

will do. However since any multiple of this works, we can pick the nicer v̄2 =

[
1
−1

]

.

We thus have eigenpairs

(

5,

[
1
1

])

and

(

1,

[
1
−1

])

.

Example: We saw that the eigenvalue for A =

[
4 −1
1 2

]

is λ1 = λ2 = 3. Then:

For λ1 = 3 choose any nonzero column of A−λ2I = A−3I =

[
4 −1
1 2

]

−

[
3 0
0 3

]

=

[
1 −1
1 −1

]

so v̄1 =

[
1
1

]

will do.

Notice that λ2 = λ1 so we get nothing new.

We thus have the single eigenpair

(

3,

[
1
1

])

.

Example: We saw that the eigenvalues for A =

[
3 2
−2 3

]

are λ1 = 3 + 2i and λ2 = 3− 2i.

Then:

For λ1 = 3 + 2i choose any nonzero column of A − λ2I = A − (3 + 2i)I =

[
3 2
−2 3

]

−
[
3 + 2i 0

0 3 + 2i

]

=

[
2i 2
−2 −2i

]

so

[
2i
−2

]

will do. However since any multiple of this works,

we can pick the nicer v̄1 =

[
1
i

]

.

We know from earlier that for λ2 = 3− 2i we can use the conjugate so v̄2 =

[
1
−i

]

.

We thus have eigenpairs

(

3 + 2i,

[
1
i

])

and

(

3− 2i,

[
1
−i

])

.



3. Using Eigenpairs to Construct Solutions:

If we go back to x̄′ = Ax̄ observe that if (λ, v̄) is an eigenpair then it turns out that x̄ = eλtv̄ is a
solution:

x̄′ =
d

dt
(eλtv̄) = eλtλv̄ = eλtAv̄ = Aeλtv̄ = Ax̄

This tells us that we can construct a fundamental set using the eigenpairs. However there are some
stumbling blocks.

What follows is all for 2× 2:

(a) If we have two real eigenpairs then we get two solutions and they will form a fundamental set.

Example: The system

x̄′ =

[
3 2
2 3

]

x̄

has a matrix with eigenpairs

(

5,

[
1
1

])

and

(

1,

[
1
−1

])

. Therefore we have two solutions

x̄1 = e5t
[
1
1

]

= e3t
[
1
1

]

and x̄2 = et
[
1
−1

]

so the general solution is:

x̄ = c1e
5t

[
1
1

]

+ c2e
t

[
1
−1

]

(b) If we have just one eigenpair (with multiplicity) then the situation is trickier. It turns out
that if (λ, v̄) is the single eigenpair of a 2× 2 matrix then a second solution can be obtained
by letting w̄ be some nonzero vector which is not a multiple of v̄ and then

x2 = eλtw̄ + teλt(A− λI)w̄

will be another solution.

Example:

x̄′ =

[
4 −1
1 2

]

x̄

has matrix with eigenpair

(

3,

[
1
1

])

. This gives us one solution x̄1 = e3t
[
1
1

]

.

To find another choose w̄ to be any non-multiple of v̄ =

[
1
1

]

, for example w̄ =

[
1
0

]

. Then a

second solution is:

x2 = eλtw̄ + teλt(A− λI)w̄ = e3t
[
1
0

]

+ te3t
[
1 −1
1 −1

] [
1
0

]

= e3t
[
1
0

]

+ te3t
[
1
1

]

= e3t
[
1 + t

t

]

so the general solution is

x̄ = c1e
3t

[
1
1

]

+ c2e
3t

[
1 + t

t

]



(c) If we have two complex conjugate eigenpairs then we do get two solutions but they are not
real solutions. We’ve seen this issue before.

Here is the long way to think about it and then the short way. The long way is just to make
sure we understand why the short way works.

Example:

x̄′ =

[
3 2
−2 3

]

x̄

has a matrix with eigenpairs

(

3 + 2i,

[
1
i

])

and

(

3− 2i,

[
1
−i

])

.

Long Way: The first gives us the solution:

x̄ = e(3+2i)t

[
1
i

]

= (e3t cos(2t) + ie3t sin(2t))

[
1
i

]

=

[
e3t cos(2t) + ie3t sin(2t)
ie3t cos(2t)− e3t sin(2t)

]

=

[
e3t cos(2t) + ie3t sin(2t)
−e3t sin(2t) + ie3t cos(2t)

]

The second gives us the solution:

x̄ = e(3−2i)t

[
1
−i

]

= (e3t cos(−2t) + ie3t sin(−2t))

[
1
−i

]

= (e3t cos(2t)− ie3t sin(2t))

[
1
−i

]

=

[
e3t cos(2t)− ie3t sin(2t)
−ie3t cos(2t)− e3t sin(2t)

]

=

[
e3t cos(2t)− ie3t sin(2t)
−e3t sin(2t)− ie3t cos(2t)

]

Since linear combinations of solutions are solutions if we take half of the sum of these we
get the solution:

x̄1 =
1

2

([
e3t cos(2t) + ie3t sin(2t)
−e3t sin(2t) + ie3t cos(2t)

]

+

[
e3t cos(2t)− ie3t sin(2t)
−e3t sin(2t)− ie3t cos(2t)

])

= e3t
[
cos(2t)
− sin(2t)

]

and if we take 1
2i times the difference we get the solution:

x̄1 =
1

2i

([
e3t cos(2t) + ie3t sin(2t)
−e3t sin(2t) + ie3t cos(2t)

]

−

[
e3t cos(2t)− ie3t sin(2t)
−e3t sin(2t)− ie3t cos(2t)

])

= e3t
[
sin(2t)
cos(2t)

]



Short Way: Look back at our very first x̄ and break it into real and imaginary parts:

x̄ =

[
e3t cos(2t) + ie3t sin(2t)
−e3t sin(2t) + ie3t cos(2t)

]

= e3t
[
cos(2t)
− sin(2t)

]

+ ie3t
[
sin(2t)
cos(2t

]

The two solutions are just the real and imaginary parts:

x̄ = e3t
[
cos(2t)
− sin(2t)

]

︸ ︷︷ ︸

x̄1

+ i e3t
[
sin(2t)
cos(2t

]

︸ ︷︷ ︸

x̄2

so the general solution is:

x̄ = c1

[
e3t cos(2t)
−e3t sin(2t)

]

+ c2

[
eet sin(2t)
e3t cos(2t)

]



(d) An Initial Value Problem: Since we haven’t done one from start to finish, here is an initial
value problem:

Example: Solve

x̄′ =

[
5 −1
3 1

]

with x̄(0) =

[
2
3

]

i. Find the eigenvalues:

p(z) = det

[
z − 5 −1
3 z − 1

]

= (z − 5)(z − 1)− (−1)(3) = z2 − 6z + 8 = (z − 2)(z − 4)

So the eigenvalues are λ1 = 2 and λ2 = 4.

ii. Find the eigenvectors:

For λ1 = 2 choose a nonzero column of A− λ2I =

[
1 −1
3 −3

]

so v̄1 =

[
1
3

]

.

For λ2 = 4 choose a nonzero column of A− λ1I =

[
3 −1
3 −1

]

so v̄1 =

[
1
1

]

.

iii. Write down the general solution:
We have

x̄ = c1e
2t

[
1
3

]

+ c2e
4t

[
1
1

]

iv. Plug in the initial value and solve:

x̄(0) = c1

[
1
3

]

+ c2

[
1
1

]

=

[
2
3

]

so that

c1 + c2 = 2

3c1 + c2 = 3

So then c1 = 1
2 and c2 = 3

2 .

v. Write down the answer:

x̄ =
1

2
e2t

[
1
3

]

+
3

2
e4t

[
1
1

]



(e) Back to the Exponential:

We never actually came back to etA. It turns out that if Ψ(t) is any fundamental matrix for
x̄′ = Ax̄ then

etA = Ψ(t)Ψ(0)−1

In other words etA is the natural fundamental matrix associated to tI = 0.

Example: Consider

A =

[
3 2
2 3

]

To find etA we note that the system x̄′ = Ax̄ has fundamental matrix

Ψ(t) =

[
e5t et

e5t −et

]

and so

etA =

[
e5t et

e5t −et

] [
1 1
1 −1

]
−1

=

[
e5t et

e5t −et

]
1

−2

[
−1 −1
−1 1

]

=
1

2

[
e5t + et e5t − et

e5t − et e5t + et

]


