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1. Introduction

The goal of this section is to look at a couple of more specific things related to systems of two
differential equations. We’re going to first throw out the requirement that the system is linear,
meaning we can’t assume it looks like x̄′ = Ax̄. Instead we’ll think of these as:

x′ = f(x, y)

y′ = g(x, y)

Example: One example would be something like:

x′ = x2
− y2

y′ = y + 2

2. Stationary Solutions

The first and easiest solutions to look for are those that are constant, or stationary, meaning
they do not move for all t, meaning x′ and y′ are both zero. We can find these by simply
setting f(x, y) = 0 and g(x, y) = 0 and solving.

Example: Find the stationary solutions to:

x′ = x2
− y2

y′ = y + 2

We set x2
− y2 = 0 and y + 2 = 0. The latter gives us y = −2 and then the former

gives us x2
− 4 = 0 so x = ±2. Therefore there are two stationary solutions, (2,−2)

and (−2,−2).



3. Hamiltonian Systems

(a) Definition of Hamiltonian

One very special type of system of differential equations is a Hamiltonian system. A
Hamiltonian system is a system in which there is some function H(x, y) such that:

dx

dt
= Hy(x, y)

dy

dt
= −Hx(x, y)

The reason that these are nice is that for a Hamiltonian system we have:

−Hx(x, y)
dx

dt
= Hy(x, y)

dy

dt

Hx(x, y)
dy

dt
+Hy(x, y)

dy

dt
= 0

d

dt
H(x, y) = 0

H(x, y) = C

For some/any constant C. This means that solutions to the system of differential equa-
tions are level curves for H.

Example: The system:

dx

dt
= 2y

dy

dt
= −2x

is Hamiltonian with H(x, y) = x2 + y2. The solutions then satisfy x2 + y2 = C and
so they’re circles.
Notice that we could also have seen this using methods from the previous section.

Here x̄′ =

[

0 2
−2 0

]

x̄ so the eigenvalues for A are 0 ± 2i and since a12 > 0 the

solutions are (clockwise) circles.

(b) Is a System Hamiltonian and Finding H(x, y).

It turns out that a system is Hamiltonian if fx + gy = 0 and if it is then we can find H

using a process we used before with exact differential equations.

Example: Show the following system is Hamiltonian and find H(x, y):

dx

dt
= x2 + 2y

dy

dt
= −2xy

First note that fx + gy = 2x − 2x = 0 so the system is Hamiltonian. We wish to
find H(x, y) with Hy(x, y) = x2 + 2y and −Hx(x, y) = −2xy. The latter tells us
Hx(x, y) = 2xy and so H(x, y) = x2y + g(y). From here Hy(x, y) = x2 + g′(y) =
x2 + 2y so g′(y) = 2y and g(y) = y2 + C. Then H(x, y) = x2y + y2 + C. Since
we can choose any constant we let H(x, y) = x2y + y2. Thus the solutions, when
plotted, satisfy the equation x2y + y2 = C, whatever this looks like!



(c) Deeper analysis of Hamiltonian systems - Graphing.

Hamiltonian systems can be analyzed further by looking at the Hessian at each stationary
point:

∂2H =

[

Hxx Hxy

Hyx Hyy

]

We’ll only look at those for which the determinant of the Hessian is nonzero.

If det ∂2H < 0 then the stationary point is a saddle.

If det ∂2H > 0 then the stationary point is a circle.

Directions can be figured out by testing points.

Example: Consider the system

dx

dt
= 4y − y3

dy

dt
= x

To find the stationary solutions we set 4y − y3 = y(4 − y2) = 0 and x = 0. The
former gives us y = 0,±2 so there are three stationary solutions at (0, 0), (0, 2) and
(0,−2).
Noting that Hy = 4y − y3 and −Hx = x, so Hx = −x, we get the Hessian:

∂2H =

[

Hxx Hxy

Hyx Hyy

]

=

[

−1 0
0 4− 3y2

]

Then at each point:

det ∂2H(0, 0) = det

[

−1 0
0 4

]

= −4 so (0, 0) is a saddle

det ∂2H(0, 2) = det

[

−1 0
0 −8

]

= 8 so (0, 2) is a circle

det ∂2H(0,−2) = det

[

−1 0
0 −8

]

= 8 so (0,−2) is a circle.

A preliminary picture is:

Notice how the circles fit nicely with the saddle shape!
(Continued on next page.)



Example (Continued):
We need to know what direction everything goes in. Interestingly, for this picture,
we can find everything out by testing one point in the system. At the point (0, 1)
we have:

dx

dt
= 3

dy

dt
= 0

Meaning at (0, 1) we have x′ = 3 and y′ = 0 which means the solution is moving to
the right. Everything else is filled in according to rules of compatibility.

If we were to fill in more solutions it starts to look pretty:



Example: Consider the system

dx

dt
= −x+ y + x2

dy

dt
= y − 2xy

To find the stationary points we set −x+ y + x2 = 0 and y − 2xy = y(1− 2x) = 0.
The latter gives us y = 0 or x = 1

2
. If y = 0 then the former gives us x = 0, 1 and

if x = 1

2
then the former gives us y = 1

4
. So there are three stationary points at

(0, 0), (1, 0) and
(

1

2
, 1

4

)

.
Noting that Hy = −x + y + x2 and −Hx = y − 2xy, so Hx = 2xy − y, we get the
Hessian:

∂2H =

[

Hxx Hxy

Hyx Hyy

]

=

[

2y 2x− 1
2x− 1 1

]

Then at each point:

det ∂2H(0, 0) = det

[

0 −1
−1 1

]

= −1 so (0, 0) is a saddle.

det ∂2H(1, 0) = det

[

0 1
1 1

]

= −1 so (1, 0) is a saddle.

det ∂2H
(

1

2
, 1

4

)

= det

[

1

2
0

0 1

]

= 1

2
so

(

1

2
, 1

4

)

is a center.

A preliminary picture is:

We need to know what direction everything goes in. Interestingly, for this picture,
we can find everything out by testing one point in the system. At the point

(

1

2
, 0
)

we have:

dx

dt
= −

dy

dt
= 0

Meaning at
(

1

2
, 0
)

the solution is moving to the left. Everything else is filled in
according to rules of compatibility. Some adjustment of the saddles is also needed!


