MATH310 Summer 2022 Exam 1

NAME:

1. For each of the following, determine first if the item is a proposition or not. If it is a proposition [10 pts] determine if it is true or false. If it is not a proposition leave the last column blank.

Item	Proposition Y/N	T/F
$\forall x \in \mathbb{R}, x^2 + 1 > -100$		
All nonnegative real numbers are positive.		
All positive real numbers are nonnegative.		
$\{\}\subseteq \emptyset$		
2x		

2. Write down a useful negation of the sentence:

[5 pts]

If I am not happy then I buy chocolate or I buy Doritos.

Solution:

3. Consider the following sentence:

If
$$x^2 > 9$$
 then either $x < -3$ or $x > 3$.

(a) Write down the converse. Solution:

(b) Write down the contrapositive. Solution:

[5 pts]

4. The following is the definition of a Cauchy sequence:

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n, m \ge N, (n, m \ge N \to |a_n - a_m| < \epsilon)$$

Negate this statement. Solution:

[5 pts]

[10 pts]

5. Give examples of sets A, B, C such that $A \subseteq B, B \subseteq C$ and $A \in C$. [8 pts] Solution:

6. Let $S = \{1, 2, 3, 4, 5\}$. Describe the set $\{3, 5, 7, 9\}$ in the form $\{f(x) \mid x \in S \text{ and } p(x)\}$ for some [7 pts] function f(x) and open sentence p(x). Solution:

7. Use a truth table to determine if $P \to (Q \land P) \not\equiv (P \to Q) \land Q$. [10 pts] Solution: 8. Prove that:

$$\left\{ x \in \mathbb{R} \mid |x+3| = 5 - |x| \right\} = \{-4, 1\}$$

Solution:

[10 pts]

9. Prove directly that $\forall x \in \mathbb{R}, |2 - x| - x \ge -2$. Solution:

[10 pts]

10.	Prove that $\forall a, b, c \in \mathbb{Z}$, if a divides b and a divides $2b + c$ then a divides c.	[10 pts]
	Solution:	

11. Prove by contradiction that ∀a, b ∈ Z if a and a – 2b are odd, then a is odd. You must use the [10 pts] definitions of odd and even for this.
Solution: