MATH310 Exam 1 Sample Questions

- 1. Which of the following are sets?
 - (a) $\{\{\{\}\}\}$
 - (b) $\{\mathbb{Z}, \emptyset\}$
 - (c) \mathbb{Z}, \mathbb{R}
 - (d) $\{1, 2, 3, ...\}$
- 2. For each of the following sets A and B determine if A is a subset of B. If not, find an element in A which is not in B.
 - (a) $A = \{5, 6\}$ and $B = \{4, 5, 6\}$
 - (b) $A = \{3x \mid x \in \mathbb{Z}\}$ and $B = \{6x \mid x \in \mathbb{Z}\}$
- 3. Give examples of sets A, B, C such that $A \subseteq B$, $B \subseteq C$ and $A \in C$.
- 4. Let $S = \{1, 2, 3, 4, 5\}$. Describe the set $\{3, 5, 7, 9\}$ in the form $\{f(x) \mid x \in S \text{ and } p(x)\}$ for some function f(x) and open sentence p(x).
- 5. Use a truth table to show that $P \to (Q \land R) \not\equiv (P \to Q) \land R$. Note: You don't have to draw every row of the truth table, just enough rows get the job done.
- 6. Consider the open sentences over the domain \mathbb{R}

 $P(x): x - 1 \ge 0$ and $Q(x): x^2 - 9 \ge 0$

Find all x such that $P(x) \vee Q(x)$ is true. List as intervals.

- 7. Determine if the following are true or false, with justification.
 - (a) $\exists x \in \{1, 2, 3\}, 5x 1$ is divisible by 3.
 - (b) $\forall x \in \mathbb{N}, 2x + 1$ is prime.
 - (c) $\forall x \in \mathbb{N}, \exists y \in \mathbb{R}, y^2 = x.$
- 8. Prove $\forall x \in \mathbb{R}, |2 x| x \ge -2$.
- 9. Prove $\forall x, y \in \mathbb{Z}, x + y$ is odd if and only if x and y have opposite parity.
- 10. Are the following statements true or false?
 - (a) $\{1\} \in \{1, 2, 3\}$
 - (b) $\emptyset \in \{\}$
 - (c) $\emptyset \in \mathcal{P}(\{1,2,3\})$
- 11. Write the elements in $\mathcal{P}(\mathcal{P}(\{1\}))$.
- 12. Let $S = \{0, 3, 6, 9, 12\}$. Describe the set $\{1, 2, 3, 4\}$ in the form $\{f(x) \mid x \in S \text{ and } p(x)\}$ for some function f(x) and open sentence p(x).

13. Fill in the following truth table only for the possibilities given.

P	Q	R	$P \wedge Q$	$(P \land Q) \to R$	$R \to (P \land Q)$
Т	Т	Т			
Т	F	Т			
F	Т	F			
F	F	F			

14. Consider the open sentences over the domain $\mathbb R$

 $P(x): x - 1 \ge 0$ and $Q(x): x^2 + 3x \le 0$

Find all $x \in \mathbb{R}$ such that $P(x) \to Q(x)$ is true. List as intervals.

- 15. Prove $\forall x \in \mathbb{Z}$, a is even iff a^2 is even.
- 16. Prove that if $A \subseteq B$, $B \subseteq C$ and $C \subseteq A$ then A = B and B = C.
- 17. Prove that:

$$\left\{ x \in \mathbb{R} \mid |x| = 6 - |2x| \right\} = \{-2, 2\}$$