MATH310 Exam 1 Sample Questions Solutions

1. Which of the following are sets?
(a) $\{\{\}\}\}$

Solution:
Yes.
(b) $\{\mathbb{Z}, \emptyset\}$

Solution:
Yes.
(c) \mathbb{Z}, \mathbb{R}

Solution:
No.
(d) $\{1,2,3, \ldots\}$

Solution:
Yes.
2. For each of the following sets A and B determine if A is a subset of B. If not, find an element in A which is not in B.
(a) $A=\{5,6\}$ and $B=\{4,5,6\}$

Solution:
Yes.
(b) $A=\{3 x \mid x \in \mathbb{Z}\}$ and $B=\{6 x \mid x \in \mathbb{Z}\}$

Solution:

No, for example $3 \in A$ but $3 \notin B$.
3. Give examples of sets A, B, C such that $A \subseteq B, B \subseteq C$ and $A \in C$.

Solution:

For example $A=\{1\}, B=\{1,2\}, C=\{1,2,\{1\}\}$.
4. Let $S=\{1,2,3,4,5\}$. Describe the set $\{3,5,7,9\}$ in the form $\{f(x) \mid x \in S$ and $p(x)\}$ for some function $f(x)$ and open sentence $p(x)$.
Solution:
We can write $\{3,5,7,9\}=\{2 x+1 \mid x \in S$ and $x \leq 4\}$.
5. Use a truth table to show that $P \rightarrow(Q \wedge R) \not \equiv(P \rightarrow Q) \wedge R$.

Note: You don't have to draw every row of the truth table, just enough rows get the job done.

Solution:

Here are all the rows:

P	Q	R	$Q \wedge R$	$P \rightarrow Q$	$P \rightarrow(Q \wedge R)$	$(P \rightarrow Q) \wedge R$
T	T	T	T	T	T	T
T	T	F	F	T	F	F
T	F	T	F	F	F	F
T	F	F	F	F	F	F
F	T	T	T	T	T	T
F	T	F	F	T	T	F
F	F	T	F	T	T	T
F	F	F	T	T	T	F

6. Consider the open sentences over the domain \mathbb{R}

$$
P(x): x-1 \geq 0 \text { and } Q(x): x^{2}-9 \geq 0
$$

Find all x such that $P(x) \vee Q(x)$ is true. List as intervals.

Solution:

$Q(x)$ is true when $(x-3)(x+3) \geq 0$. This will happen either when both $x-3 \geq 0$ and $x+3 \geq 0$, in other words $x \geq 3$ and $x \geq-3$, meaning $x \geq 3$, or when both $x-3 \leq 0$ and $x+3 \leq 0$, in other words $x \leq 3$ and $x \leq-3$, meaning $x \leq-3$.
Thus $Q(x)$ is true when $x \geq 3$ or $x \leq-3$.
For $P(x) \vee Q(x)$ to be true we have three cases:

- $P(x)$ and $Q(x)$ both true, meaning $x \geq 1$ and either $x \geq 3$ or $x \leq-3$. This can only happen when $x \geq 3$. This yields $[3, \infty)$.
- $P(x)$ true but $Q(x)$ false, meaning $x \geq 1$. This yields $[1, \infty)$.
- $P(x)$ false but $Q(x)$ true, meaning $x \geq 3$ or $x \leq-3$. This yields $(-\infty,-3] \cup[3, \infty)$.

7. Determine if the following are true or false, with justification.
(a) $\exists x \in\{1,2,3\}, 5 x-1$ is divisible by 3 .

Solution:

True, for example when $x=2$ then $5(2)-1=9$ is divisible by 3 .
(b) $\forall x \in \mathbb{N}, 2 x+1$ is prime.

Solution:

False, for example when $x=4$ we have $2(4)+1=9$ not prime.
(c) $\forall x \in \mathbb{N}, \exists y \in \mathbb{R}, y^{2}=x$.

Solution:

True, since $y=\sqrt{x}$ will work.
8. Prove $\forall x \in \mathbb{R},|2-x|-x \geq-2$.

Solution:

We'll look at two cases:

- If $2-x \geq 0$ then $|2-x|=2-x$ and $x \leq 2$ and so $|2-x|-x=2-x-x=2-2 x \geq$ $2-2(2)=-2$.
- If $2-x<0$ then $|2-x|=-(2-x)=x-2$ and $x>2$ and so $|2-x|-x=x-2-x=$ $-2 \geq-2$.

9. Prove $\forall x, y \in \mathbb{Z}, x+y$ is odd if and only if x and y have opposite parity.

Solution:

For the forward direction, assume $x+y$ is odd and we claim x and y have opposite parity. To prove this we'll use the contrapositive and assume x and y have the same parity. If x and y are both odd then $x=2 k+1$ and $y=2 j+1$ for $k, j \in \mathbb{Z}$ and then $x+y=2 k+1+2 j+1=2(k+j+1)$ which is even. If x and y are both even then $x=2 k$ and $y=2 j$ for $k, j \in \mathbb{Z}$ and then $x+y=2 k+2 j=2(k+j)$ which is even.
For the backward direction, assume x and y have opposite parity and we claim $x+y$ is odd. If x is odd and y is even then $x=2 k+1$ and $y=2 j$ for $k, j \in \mathbb{Z}$ and then $x+y=2 k+1+2 j=$ $2(k+j)+1$ which is odd. If x is even and y is odd then $x=2 k$ and $y=2 j+1$ for $k, j \in \mathbb{Z}$ and then $x+y=2 k+2 j+1=2(k+j)+1$ which is odd.
10. Are the following statements true or false?
(a) $\{1\} \in\{1,2,3\}$

Solution:

False.
(b) $\emptyset \in\}$

Solution:

False.
(c) $\emptyset \in \mathcal{P}(\{1,2,3\})$

Solution:

True.
11. Write the elements in $\mathcal{P}(\mathcal{P}(\{1\}))$.

Solution:

We have:

$$
\mathcal{P}(\{1\})=\{\emptyset,\{1\}\}
$$

Then we have:

$$
\mathcal{P}(\mathcal{P}(\{1\})=\mathcal{P}(\{\emptyset,\{1\}\})=\{\emptyset,\{\emptyset\},\{\{1\}\},\{\emptyset,\{1\}\}\}
$$

12. Let $S=\{0,3,6,9,12\}$. Describe the set $\{1,2,3,4\}$ in the form $\{f(x) \mid x \in S$ and $p(x)\}$ for some function $f(x)$ and open sentence $p(x)$.

Solution:

We can write $\{1,2,3,4\}=\{x / 3 \mid x \in S$ and $x \geq 3\}$.
13. Fill in the following truth table only for the possibilities given.

P	Q	R	$P \wedge Q$	$(P \wedge Q) \rightarrow R$	$R \rightarrow(P \wedge Q)$
T	T	T	T	T	T
T	F	T	F	T	F
F	T	F	F	T	T
F	F	F	F	T	T

Solution:

14. Consider the open sentences over the domain \mathbb{R}

$$
P(x): x-1 \geq 0 \text { and } Q(x): x^{2}+3 x \leq 0
$$

Find all $x \in \mathbb{R}$ such that $P(x) \rightarrow Q(x)$ is true. List as intervals.

Solution:

15. Prove $\forall x \in \mathbb{Z}, a$ is even iff a^{2} is even.

Solution:

For the forward direction if a is even then $a=2 k$ for some $k \in \mathbb{Z}$ and then $a^{2}=(2 k)^{2}=4 k^{2}=$ $2\left(2 k^{2}\right)$ which is even.
For the backward direction we use the contrapositive. We assume a is odd and show a^{2} is odd. If a is odd then $a=2 k+1$ for some $k \in \mathbb{Z}$ and then $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$ which is odd.
16. Prove that if $A \subseteq B, B \subseteq C$ and $C \subseteq A$ then $A=B$ and $B=C$.

Solution:

First we show $A=B$. If $x \in A$ then since $A \subseteq B$ then $x \in B$. If $x \in B$ then since $B \subseteq C$ we have $x \in C$ and since $C \subseteq A$ we have $x \in A$.
Next we show $B=C$. The proof is similar.
17. Prove that:

$$
\{x \in \mathbb{R}||x|=6-|2 x|\}=\{-2,2\}
$$

Solution:

First we show $\{x \in \mathbb{R}||x|=6-|2 x|\} \subseteq\{-2,2\}$. Suppose $x \in\{x \in \mathbb{R}||x|=6-|2 x|\}$. We look at two cases.

- If $x \geq 0$ then $|x|=x$ and $|2 x|=2 x$ and then since $x=6-2 x$ we get $3 x=6$ and so $x=2$.
- If $x<0$ then $|x|=-x$ and $|2 x|=-2 x$ and then since $-x=6-(-2 x)$ we get $-3 x=6$ and so $x=-2$.

Next we show $\{-2,2\} \subseteq\{x \in \mathbb{R}||x|=6-|2 x|\}$. Suppose $x \in\{-2,2\}$. If $x=-2$ then $|x|=2$ and $6-|2 x|=6-|2(-2)|=6-4=2$ and if $x=2$ then $|x|=2$ and $6-|2(2)|=6-4=2$.

