MATH310 Exam 2 Sample Questions

- 1. Let A and B be sets. Prove that $A \cup B \subseteq B$ iff $A \subseteq B$.
- 2. Let A and B be sets. Prove that $A = (A B) \cup (A \cap B)$.
- 3. The following are false. Provide counterexamples as evidence:
 - (a) $\forall x \in \mathbb{R}$ with $x > 0, x^2 \ge x$.
 - (b) $\forall a, b, c, n \in \mathbb{N}$ with n > 1 and n not dividing c if n divides ac bc then n divides a b.
 - (c) $\forall a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \nmid c$ then $a \nmid c$.
 - (d) \forall sets A, B, if $A \cap B = \emptyset$ then $A = \emptyset$ or $B = \emptyset$.
- 4. Prove that if $a, b \in \mathbb{Z}$ with $a \ge 2$ then $a \nmid b$ or $a \nmid (b+1)$.
- 5. Prove that the sum of the squares of two odd integers cannot be the square of an integer.
- 6. Indicate what you would assume when proving each of the following by contradiction. You do not need to prove either!
 - (a) $\forall x, (P(x) \lor Q(x)) \to (R(x) \land (\sim S(x)))$
 - (b) $P \to (Q \to R)$
- 7. Define $f(x) = x^5 + x^2 + 1$.
 - (a) Prove that there is some $x \in \mathbb{R}$ with f(x) = 0.
 - (b) Prove that there is no $x \in \mathbb{R}$ with $x \ge 0$ and f(x) = 0.
- 8. Prove using weak induction that $\forall n \in \mathbb{N}$ we have

$$1(1!) + 2(2!) + \dots + n(n!) = (n+1)! - 1$$

- 9. Prove using weak induction that $\forall n \in \mathbb{N}$ with $n \geq 4$ that $3^n > 5n^2$.
- 10. Define a sequence recursively by $a_1 = 1$, $a_2 = 3$ and $a_n = 2a_{n-1} + a_{n-2}$. Prove using strong induction that a_n is odd for all integers $n \ge 1$.
- 11. Prove using strong induction that any postage 18 cents or greater can be made using only 4 cent and 7 cent stamps.
- 12. Prove that this statement is true: $\exists n \in \mathbb{Z}, n^3 < n$.
- 13. Prove that this statement is false: \forall sets A, B if $A \subseteq B$ then $A \cap B \neq B$
- 14. Prove or disprove the statement:

$$\forall n \in \mathbb{N}, 4^n > n^4$$

- 15. Define the relation R on Z by aRb if $3 \nmid (a+2b)$. Prove that R is not an equivalence relation.
- 16. Define the relation R on Z by aRb if $|a-b| \leq 10$. Prove that R is not an equivalence relation.
- 17. Prove that $f: (\mathbb{R} \{1\}) \to (\mathbb{R} \{2\})$ given by $f(x) = \frac{2x+1}{x-1}$ is invertible and find $f^{-1}(y)$.

- 18. Suppose $A, B \subseteq U$. Prove that: $\chi_{A \cup B}(x) = 1$ iff $\chi_A(x) + \chi_B(x) > 0$
- 19. Suppose f and g are two functions with the same domain D. Define $A = \{x \in D \mid f(x) = g(x).$ Prove A = D iff f = g.
- 20. Prove that the function $f(x) = x^2 x$ for $x \ge 1$ is increasing.
- 21. Prove that the function $f: (0,\infty) \to (1,\infty)$ given by $f(x) = \frac{x+1}{x}$ is surjective.
- 22. Prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 5$ is not surjective.
- 23. Prove that the function $f:(0,\infty)\to (1,\infty)$ given by $f(x)=\frac{x+1}{x}$ is injective.
- 24. Prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = x + |x| is not injective.
- 25. Prove that the function $f : (\mathbb{R} \{0\}) \to (\mathbb{R} \{1\})$ defined by $f(x) = \frac{x-1}{x}$. is 1-1 and find a [20 pts] formula for its inverse.
- 26. Suppose A is a set with a elements and B is a set with b elements. Prove that if $f : A \to B$ is bijective then a = b.
- 27. Prove that if $f: A \to B$ and $g: B \to C$ are both surjective then so is $g \circ f: A \to C$.