MATH310 Exam 2 Sample Questions Solutions

- 1. Let A and B be sets. Prove that $A \cup B \subseteq B$ iff $A \subseteq B$.
 - Solution:
 - \longrightarrow :

Assume $A \cup B \subseteq B$. We claim $A \subseteq B$. Let $x \in A$. Then $A \in A \cup B$ and since $A \cup B \subseteq B$ we know $x \in B$.

 \leftarrow :

Assume $A \subseteq B$. We claim $A \cup B \subseteq B$. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$ or both. If $x \in A$ then since $A \subseteq B$ we know $x \in B$. If $x \in B$ then $x \in B$. Either way, $x \in B$.

- 2. Let A and B be sets. Prove that $A = (A B) \cup (A \cap B)$.
 - Solution:

 \subseteq :

Suppose $x \in A$. We claim $x \in (A - B) \cup (A \cap B)$. There are two cases to look at. If $x \notin B$ then $x \in A - B$ and so $x \in (A - B) \cup (A \cap B)$. If $x \in B$ then $x \in A \cap B$ and so $x \in (A - B) \cup (A \cap B)$. \supseteq :

Suppose $x \in (A - B) \cup (A \cap B)$. We claim $x \in A$. There are two cases to look at. If $x \in A - B$ then $x \in A$. If $x \in A \cap B$ then $x \in A$. Either way, $x \in A$.

- 3. The following are false. Provide counterexamples as evidence:
 - (a) $\forall x \in \mathbb{R}$ with $x > 0, x^2 \ge x$. Solution: A counterexample is x = 0.1.
 - (b) $\forall a, b, c, n \in \mathbb{N}$ with n > 1 and n not dividing c if n divides ac bc then n divides a b. Solution:

A counterexample is n = 10, a = 4, b = 2 and c = 5.

(c) $\forall a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \nmid c$ then $a \nmid c$.

Solution:

A counterexample is a = 2, b = 4 and c = 2.

- (d) \forall sets A, B, if $A \cap B = \emptyset$ then $A = \emptyset$ or $B = \emptyset$. Solution: A counterexample is $A = \{1\}$ and $B = \{2\}$.
- 4. Prove that if $a, b \in \mathbb{Z}$ with $a \ge 2$ then $a \nmid b$ or $a \nmid (b+1)$.

Solution:

Note: We are trying to prove $P \lor Q$. We will do it by contradiction and assume $\sim P \land \sim Q$. Assume $a \mid b$ and $a \mid (b+1)$. Since $a \mid b$ we know ak = b for some $k \in \mathbb{Z}$ and since $a \mid (b+1)$ we know aj = b + 1 for some $j \in \mathbb{Z}$.

Then aj = b + 1 = ak + 1 so then a(j - k) = 1 so then $a \mid 1$ but $a \geq 2$ which makes this impossible.

5. Prove that the sum of the squares of two odd integers cannot be the square of an integer. **Solution:**

Assume our two odd integers are 2k + 1 and 2j + 1 for $k, j \in \mathbb{Z}$. The sum of the squares is $(2k+1)^2 + (2j+1)^2 = 4k^2 + 4k + 1 + 4j^2 + 4j + 1 = 4(k^2 + k + j^2 + j) + 2$.

This cannot be the square of an integer because the square of an odd integer has the form $(2a + 1)^2 = 4a^2 + 4a + 1 = 4(a^2 + a) + 1$ and the square of an even integer has the form $(2a)^2 = 4(a^2)$.

- 6. Indicate what you would assume when proving each of the following by contradiction. You do not need to prove either!
 - (a) $\forall x, (P(x) \lor Q(x)) \to (R(x) \land (\sim S(x)))$ Solution: We would assume:

$$\sim [\forall x, (P(x) \lor Q(x)) \to (R(x) \land (\sim S(x)))]$$

This is equivalent to:

$$\exists x, (P(x) \lor Q(x)) \land (\sim R(x) \lor S(x))$$

(b) $P \rightarrow (Q \rightarrow R)$ Solution: We would assume:

$$\sim [P \rightarrow (Q \rightarrow R)]$$

This is equivalent to:

$$P \wedge (Q \wedge \sim R)$$

- 7. Define $f(x) = x^5 + x^2 + 1$.
 - (a) Prove that there is some $x \in \mathbb{R}$ with f(x) = 0. Solution:

Observe that f(-2) = -32 + 4 + 1 < 0 and f(0) = 1 and since f(x) is continuous the intermediate value theorem tells us there is some $x \in (-2, 0)$ with f(x) = 0.

(b) Prove that there is no $x \in \mathbb{R}$ with $x \ge 0$ and f(x) = 0.

Solution:

You can ignore this since we've stayed away from too much calculus, but essentially it's because f(0) = 1 and $f'(x) = 4x^2 + 2x$ which is positive, so f(x) is increasing, when x > 0.

8. Prove using weak induction that $\forall n \in \mathbb{N}$ we have

$$1(1!) + 2(2!) + \dots + n(n!) = (n+1)! - 1$$

Solution:

For the base case observe that the left side is 1(1!) = 1 and the right side is (1+1)! - 1 = 1, so they are equal.

For the inductive step we assume that $1(1!) + 2(2!) + \dots + n(n!) = (n+1)! - 1$ and we claim that $1(1!) + 2(2!) + \dots + n(n!) + (n+1)(n+1)! = ((n+1)+1)! - 1$.

To this end, observe that:

$$\begin{split} 1(1!) + 2(2!) + \ldots + n(n!) + (n+1)(n+1)! &= (n+1)! - 1 + (n+1)(n+1)! \\ &= (n+1)!(1+n+1) - 1 \\ &= (n+2)(n+1)! - 1 \\ &= (n+2)! - 1 \\ &= ((n+1)+1)! - 1 \end{split}$$

9. Prove using weak induction that $\forall n \in \mathbb{N}$ with $n \ge 4$ that $3^n > 5n^2$.

Solution:

For the base case observe that the left side is $3^4 = 81$ and the right side is $5(4)^2 = 80$, so it is true.

For the inductive step we assume that $3^n > 5n^2$ and we claim that $3^{n+1} > 5(n+1)^2$. We will actually show that $3^{n+1} - 5(n+1)^2 > 0$.

Observe that:

$$3^{n+1} - 5(n+1)^2 = 3 \cdot 3^n - 5n^2 - 10n - 5$$

$$\ge 3(5n^2) - 5n^2 - 10n - 5$$

$$\ge 10n^2 - 10n - 5$$

$$> 10n(n-1) - 5$$

Since $n \ge 4$ we have $10n(n-1) - 5 \ge 40(3) - 5$ which is certainly greater than 0.

10. Define a sequence recursively by $a_1 = 1$, $a_2 = 3$ and $a_n = 2a_{n-1} + a_{n-2}$. Prove using strong induction that a_n is odd for all integers $n \ge 1$.

Solution:

For the inductive step assume that all of $a_1, a_2, ..., a_n$ are oddd. We claim a_{n+1} is odd. Observe that for some $k, j \in \mathbb{Z}$ we have:

$$a_{n+1} = 2a_n + a_{n-1}$$

= 2(2k + 1) + 2j + 1
= 2(2k + j + 1) + 1

This is odd.

For the base case(s) note that we reference n-1 so we must have $n-1 \ge 1$ and so $n \ge 2$. Thus the n = 1, 2 cases must be done separately. But $a_1 = 1$ and $a_2 = 3$ are both odd, so we are done. 11. Prove using strong induction that any postage 18 cents or greater can be made using only 4 cent and 7 cent stamps.

Solution:

For the inductive step assume we can do 18, 19, ..., n cents. Since we can do n - 3 we just do that, then add a 4-cent stamp.

For the base case(s) note that we reference n-3 so we must have $n-3 \ge 18$ and so $n \ge 21$. Thus the n = 18, 19, 20, 21 cases must be done separately.

Observe that 18 = 2(7) + 1(4), 19 = 1(7) + 3(4), 20 = 0(7) + 5(4), and 21 = 3(7) + 0(4).

12. Prove that this statement is true: $\exists n \in \mathbb{Z}, n^3 < n$.

Solution:

Obseve that n = -2 works.

13. Prove that this statement is false: \forall sets A, B if $A \subseteq B$ then $A \cap B \neq B$

Solution:

Observe that a counterexample is $A = \{1\}$ and $B = \{1, 2\}$.

14. Prove or disprove the statement:

$$\forall n \in \mathbb{N}, 4^n > n^4$$

Solution:

It is false since a counterexample is n = 4.

15. Define the relation R on \mathbb{Z} by aRb if $3 \nmid (a+2b)$. Prove that R is not an equivalence relation. Solution:

Observe that 0R1 is true since $3 \nmid (0+2(1) \text{ and } 1R3 \text{ is true since } 3 \nmid (1+2(3)) \text{ but } 0R3 \text{ is false since } 3 \mid (0+2(3)).$

16. Define the relation R on \mathbb{Z} by aRb if $|a - b| \le 10$. Prove that R is not an equivalence relation. Solution:

Observe that 10R0 and 20R10 are true but 20R0 is not, so transitivity fails.

17. Prove that $f : (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{2\})$ given by $f(x) = \frac{2x+1}{x-1}$ is invertible and find $f^{-1}(y)$. Solution:

Observe that f is 1-1 since if we have $x_1, x_2 \in \mathbb{R} - \{1\}$ with $f(x_1) = f(x_2)$ then:

$$\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$$

$$(2x_1+1)(x_2-1) = (2x_2+1)(x_1-1)$$

$$2x_1x_2-2x_1+x_2-1 = 2x_1x_1-2x_2+x_1-1$$

$$3x_2 = 3x_1$$

$$x_2 = x_1$$

- 18. Suppose $A, B \subseteq U$. Prove that: $\chi_{A \cup B}(x) = 1$ iff $\chi_A(x) + \chi_B(x) > 0$ Solution:
 - \longrightarrow :

Suppose $\chi_{A\cup B}(x) = 1$ so then $x \in A \cup B$ so then $x \in A$ or $x \in B$ or both. It follows that $\chi_A(x) = 1$ or $\chi_B(x) = 1$ or both. Together $\chi_A(x) + \chi_B(x) > 0$. \leftarrow :

By contrapositive, suppose $\chi_A(x) + \chi_B(x) = 0$ so then $\chi_A(x) = 0$ and $\chi_B(x) = 0$ so then $x \notin A$ and $x \notin B$. It follows that $A \notin A \cup B$ and so $\chi_{A \cup b}(x) = 0$.

19. Suppose f and g are two functions with the same domain D. Define $A = \{x \in D \mid f(x) = g(x).$ Prove A = D iff f = g.

Solution:

\longrightarrow :

Suppose A = D. This means that f(x) = g(x) for all $x \in D$ and so f = g.

Suppose f = g. Let $x \in D$, so then f(x) = g(x) and so $x \in A$. Thus $D \subseteq A$. Since $A \subseteq D$ by definition, we have A = D.

20. Prove that the function $f(x) = x^2 - x$ for $x \ge 1$ is increasing.

Solution:

Suppose $x_1, x_2 \in (1, \infty)$. We'll show if $x_1 < x_2$ then $x_1^2 - x_1 < x_2^2 - x_2$. Since $x_1 < x_2$ we have $x_1 - 1 < x_2 - 1$. Since all of $x_1, x_2, x_1 - 1, x_2 - 1$ are positive we then have:

$$x_1(x_1-1) < x_2(x_2-1)$$

This is exactly our claim.

21. Prove that the function $f: (0, \infty) \to (1, \infty)$ given by $f(x) = \frac{x+1}{x}$ is surjective. Solution:

For any $y \in (1, \infty)$ we need some x with f(x) = y. this means finding an x with:

$$\frac{x+1}{x} = y$$
$$x+1 = xy$$
$$x-xy = -1$$
$$xy - x = 1$$
$$x(y-1) = 1$$
$$x = \frac{1}{y-1}$$

Since y > 1 we know that $\frac{1}{y-1} \in (0, \infty)$ and we are done.

22. Prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 5$ is not surjective. Solution:

There is no x with f(x) = 0, since such an x would have $x^2 + 5 = 0$ and so $x^2 = -5$, which is not possible with $x \in \mathbb{R}$.

23. Prove that the function $f:(0,\infty) \to (1,\infty)$ given by $f(x) = \frac{x+1}{x}$ is injective.

Solution:

Suppose $x_1, x_2 \in (0, \infty)$. We'll prove that if $f(x_1) = f(x_2)$ then $x_1 = x_2$:

$$\frac{x_1 + 1}{x_1} = \frac{x_2 + 1}{x_2}$$
$$(x_1 + 1)(x_2) = (x_2 + 1)(x_1)$$
$$x_1x_2 + x_2 = x_1x_2 + x_1$$
$$x_2 = x_1$$

24. Prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = x + |x| is not injective.

Solution:

Observe that f(0) = 0 and f(-1) = 0.

25. Prove that the function $f : (\mathbb{R} - \{0\}) \to (\mathbb{R} - \{1\})$ defined by $f(x) = \frac{x-1}{x}$. is 1-1 and find a [20 pts] formula for its inverse.

Solution:

Suppose $x_1, x_2 \in \mathbb{R} - \{0\}$. We'll prove that if $f(x_1) = f(x_2)$ then $x_1 = x_2$:

$$\frac{x_1 - 1}{x_1} = \frac{x_2 - 1}{x_2}$$
$$(x_1 - 1)(x_2) = (x_2 - 1)(x_1)$$
$$x_1 x_2 - x_2 = x_1 x_2 - x_1$$
$$-x_2 = -x_1$$
$$x_2 = x_1$$

For the formula we write $y = \frac{x-1}{x}$ and solve for x:

$$\frac{x-1}{x} = y$$
$$x-1 = xy$$
$$x-xy = 1$$
$$x(1-y) = 1$$
$$x = \frac{1}{1-y}$$

Thus the formula is $f^{-1}(y) = \frac{1}{1-y}$.

26. Suppose A is a set with a elements and B is a set with b elements. Prove that if $f : A \to B$ is bijective then a = b.

Solution:

If a > b then f cannot be 1 - 1 and if a < b then f cannot be onto.

27. Prove that if $f: A \to B$ and $g: B \to C$ are both surjective then so is $g \circ f: A \to C$.

Solution:

Suppose $z \in C$. We need some $x \in A$ with $(x, z) \in g \circ f$.

Since g is surjective there is some $y \in B$ with $(y, z) \in g$. Since f is surjective there is some $x \in A$ with $(x, y) \in f$.

By the definition of composition we then have $(x, y) \in g \circ f$.