
MATH310 Exam 2 Sample Questions Solutions

1. Let A and B be sets. Prove that A ∪B ⊆ B iff A ⊆ B.

Solution:

−→:

Assume A ∪B ⊆ B. We claim A ⊆ B. Let x ∈ A. Then A ∈ A ∪B and since A ∪B ⊆ B we
know x ∈ B.

←−:

Assume A ⊆ B. We claim A ∪ B ⊆ B. Let x ∈ A ∪ B. Then either x ∈ A or x ∈ B or both.
If x ∈ A then since A ⊆ B we know x ∈ B. If x ∈ B then x ∈ B. Either way, x ∈ B.

2. Let A and B be sets. Prove that A = (A−B) ∪ (A ∩B).

Solution:

⊆:

Suppose x ∈ A. We claim x ∈ (A−B)∪ (A∩B). There are two cases to look at. If x 6∈ B then
x ∈ A−B and so x ∈ (A−B)∪(A∩B). If x ∈ B then x ∈ A∩B and so x ∈ (A−B)∪(A∩B).

⊇:

Suppose x ∈ (A−B)∪ (A∩B). We claim x ∈ A. There are two cases to look at. If x ∈ A−B
then x ∈ A. If x ∈ A ∩B then x ∈ A. Either way, x ∈ A.

3. The following are false. Provide counterexamples as evidence:

(a) ∀x ∈ R with x > 0, x2 ≥ x.

Solution:

A counterexample is x = 0.1.

(b) ∀a, b, c, n ∈ N with n > 1 and n not dividing c if n divides ac− bc then n divides a− b.
Solution:

A counterexample is n = 10, a = 4, b = 2 and c = 5.

(c) ∀a, b, c ∈ Z, if a | b and b - c then a - c.
Solution:

A counterexample is a = 2, b = 4 and c = 2.

(d) ∀ sets A,B, if A ∩B = ∅ then A = ∅ or B = ∅.
Solution:

A counterexample is A = {1} and B = {2}.

4. Prove that if a, b ∈ Z with a ≥ 2 then a - b or a - (b+ 1).

Solution:

Note: We are trying to prove P ∨Q. We will do it by contradiction and assume ∼ P ∧ ∼ Q.

Assume a | b and a | (b+ 1). Since a | b we know ak = b for some k ∈ Z and since a | (b+ 1)
we know aj = b+ 1 for some j ∈ Z.

Then aj = b + 1 = ak + 1 so then a(j − k) = 1 so then a | 1 but a ≥ 2 which makes this
impossible.



5. Prove that the sum of the squares of two odd integers cannot be the square of an integer.

Solution:

Assume our two odd integers are 2k + 1 and 2j + 1 for k, j ∈ Z. The sum of the squares is
(2k + 1)2 + (2j + 1)2 = 4k2 + 4k + 1 + 4j2 + 4j + 1 = 4(k2 + k + j2 + j) + 2.

This cannot be the square of an integer because the square of an odd integer has the form
(2a + 1)2 = 4a2 + 4a + 1 = 4(a2 + a) + 1 and the square of an even integer has the form
(2a)2 = 4(a2).

6. Indicate what you would assume when proving each of the following by contradiction. You do
not need to prove either!

(a) ∀x, (P (x) ∨Q(x))→ (R(x) ∧ (∼ S(x)))

Solution:

We would assume:

∼ [∀x, (P (x) ∨Q(x))→ (R(x) ∧ (∼ S(x)))]

This is equivalent to:

∃x, (P (x) ∨Q(x)) ∧ (∼R(x) ∨ S(x))

(b) P → (Q→ R)

Solution:

We would assume:

∼ [P → (Q→ R)]

This is equivalent to:

P ∧ (Q ∧ ∼R)

7. Define f(x) = x5 + x2 + 1.

(a) Prove that there is some x ∈ R with f(x) = 0.

Solution:

Observe that f(−2) = −32 + 4 + 1 < 0 and f(0) = 1 and since f(x) is continuous the
intermediate value theorem tells us there is some x ∈ (−2, 0) with f(x) = 0.

(b) Prove that there is no x ∈ R with x ≥ 0 and f(x) = 0.

Solution:

You can ignore this since we’ve stayed away from too much calculus, but essentially it’s
because f(0) = 1 and f ′(x) = 4x2 + 2x which is positive, so f(x) is increasing, when
x > 0.

8. Prove using weak induction that ∀n ∈ N we have

1(1!) + 2(2!) + ...+ n(n!) = (n+ 1)!− 1

Solution:



For the base case observe that the left side is 1(1!) = 1 and the right side is (1 + 1)!− 1 = 1,
so they are equal.

For the inductive step we assume that 1(1!) + 2(2!) + ... + n(n!) = (n + 1)! − 1 and we claim
that 1(1!) + 2(2!) + ...+ n(n!) + (n+ 1)(n+ 1)! = ((n+ 1) + 1)!− 1.

To this end, observe that:

1(1!) + 2(2!) + ...+ n(n!) + (n+ 1)(n+ 1)! = (n+ 1)!− 1 + (n+ 1)(n+ 1)!

= (n+ 1)!(1 + n+ 1)− 1

= (n+ 2)(n+ 1)!− 1

= (n+ 2)!− 1

= ((n+ 1) + 1)!− 1

9. Prove using weak induction that ∀n ∈ N with n ≥ 4 that 3n > 5n2.

Solution:

For the base case observe that the left side is 34 = 81 and the right side is 5(4)2 = 80, so it is
true.

For the inductive step we assume that 3n > 5n2 and we claim that 3n+1 > 5(n+ 1)2.

We will actually show that 3n+1 − 5(n+ 1)2 > 0.

Observe that:

3n+1 − 5(n+ 1)2 = 3 · 3n − 5n2 − 10n− 5

≥ 3(5n2)− 5n2 − 10n− 5

≥ 10n2 − 10n− 5

≥ 10n(n− 1)− 5

Since n ≥ 4 we have 10n(n− 1)− 5 ≥ 40(3)− 5 which is certainly greater than 0.

10. Define a sequence recursively by a1 = 1, a2 = 3 and an = 2an−1 + an−2. Prove using strong
induction that an is odd for all integers n ≥ 1.

Solution:

For the inductive step assume that all of a1, a2, ..., an are oddd. We claim an+1 is odd.

Observe that for some k, j ∈ Z we have:

an+1 = 2an + an−1

= 2(2k + 1) + 2j + 1

= 2(2k + j + 1) + 1

This is odd.

For the base case(s) note that we reference n − 1 so we must have n − 1 ≥ 1 and so n ≥ 2.
Thus the n = 1, 2 cases must be done separately. But a1 = 1 and a2 = 3 are both odd, so we
are done.



11. Prove using strong induction that any postage 18 cents or greater can be made using only 4
cent and 7 cent stamps.

Solution:

For the inductive step assume we can do 18, 19, ..., n cents. Since we can do n− 3 we just do
that, then add a 4-cent stamp.

For the base case(s) note that we reference n− 3 so we must have n− 3 ≥ 18 and so n ≥ 21.
Thus the n = 18, 19, 20, 21 cases must be done separately.

Observe that 18 = 2(7) + 1(4), 19 = 1(7) + 3(4), 20 = 0(7) + 5(4), and 21 = 3(7) + 0(4).

12. Prove that this statement is true: ∃n ∈ Z, n3 < n.

Solution:

Obseve that n = −2 works.

13. Prove that this statement is false: ∀ sets A,B if A ⊆ B then A ∩B 6= B

Solution:

Observe that a counterexample is A = {1} and B = {1, 2}.

14. Prove or disprove the statement:
∀n ∈ N, 4n > n4

Solution:

It is false since a counterexample is n = 4.

15. Define the relation R on Z by aRb if 3 - (a+ 2b). Prove that R is not an equivalence relation.

Solution:

Observe that 0R1 is true since 3 - (0 + 2(1) and 1R3 is true since 3 - (1 + 2(3)) but 0R3 is false
since 3 | (0 + 2(3)).

16. Define the relation R on Z by aRb if |a− b| ≤ 10. Prove that R is not an equivalence relation.

Solution:

Observe that 10R0 and 20R10 are true but 20R0 is not, so transitivity fails.

17. Prove that f : (R− {1})→ (R− {2}) given by f(x) = 2x+1
x−1 is invertible and find f−1(y).

Solution:

Observe that f is 1-1 since if we have x1, x2 ∈ R− {1} with f(x1) = f(x2) then:

2x1 + 1

x1 − 1
=

2x2 + 1

x2 − 1

(2x1 + 1)(x2 − 1) = (2x2 + 1)(x1 − 1)

2x1x2 − 2x1 + x2 − 1 = 2x1x1 − 2x2 + x1 − 1

3x2 = 3x1

x2 = x1



18. Suppose A,B ⊆ U . Prove that: χA∪B(x) = 1 iff χA(x) + χB(x) > 0

Solution:

−→:

Suppose χA∪B(x) = 1 so then x ∈ A ∪ B so then x ∈ A or x ∈ B or both. It follows that
χA(x) = 1 or χB(x) = 1 or both. Together χA(x) + χB(x) > 0.

←−:

By contrapositive, suppose χA(x) + χB(x) = 0 so then χA(x) = 0 and χB(x) = 0 so then
x 6∈ A and x 6∈ B. It follows that A 6∈ A ∪B and so χA∪b(x) = 0.

19. Suppose f and g are two functions with the same domain D. Define A = {x ∈ D
∣∣∣ f(x) = g(x).

Prove A = D iff f = g.

Solution:

−→:

Suppose A = D. This means that f(x) = g(x) for all x ∈ D and so f = g.

←−:

Suppose f = g. Let x ∈ D, so then f(x) = g(x) and so x ∈ A. Thus D ⊆ A. Since A ⊆ D by
definition, we have A = D.

20. Prove that the function f(x) = x2 − x for x ≥ 1 is increasing.

Solution:

Suppose x1, x2 ∈ (1,∞). We’ll show if x1 < x2 then x21 − x1 < x22 − x2.

Since x1 < x2 we have x1 − 1 < x2 − 1. Since all of x1, x2, x1 − 1, x2 − 1 are positive we then
have:

x1(x1 − 1) < x2(x2 − 1)

This is exactly our claim.

21. Prove that the function f : (0,∞)→ (1,∞) given by f(x) = x+1
x is surjective.

Solution:

For any y ∈ (1,∞) we need some x with f(x) = y. this means finding an x with:

x+ 1

x
= y

x+ 1 = xy

x− xy = −1

xy − x = 1

x(y − 1) = 1

x =
1

y − 1

Since y > 1 we know that 1
y−1 ∈ (0,∞) and we are done.



22. Prove that the function f : R→ R given by f(x) = x2 + 5 is not surjective.

Solution:

There is no x with f(x) = 0, since such an x would have x2 + 5 = 0 and so x2 = −5, which is
not possible with x ∈ R.

23. Prove that the function f : (0,∞)→ (1,∞) given by f(x) = x+1
x is injective.

Solution:

Suppose x1, x2 ∈ (0,∞). We’ll prove that if f(x1) = f(x2) then x1 = x2:

x1 + 1

x1
=
x2 + 1

x2
(x1 + 1)(x2) = (x2 + 1)(x1)

x1x2 + x2 = x1x2 + x1

x2 = x1

24. Prove that the function f : R→ R given by f(x) = x+ |x| is not injective.

Solution:

Observe that f(0) = 0 and f(−1) = 0.

25. Prove that the function f : (R− {0}) → (R− {1}) defined by f(x) = x−1
x . is 1-1 and find a [20 pts]

formula for its inverse.

Solution:

Suppose x1, x2 ∈ R− {0}. We’ll prove that if f(x1) = f(x2) then x1 = x2:

x1 − 1

x1
=
x2 − 1

x2
(x1 − 1)(x2) = (x2 − 1)(x1)

x1x2 − x2 = x1x2 − x1
−x2 = −x1
x2 = x1

For the formula we write y = x−1
x and solve for x:

x− 1

x
= y

x− 1 = xy

x− xy = 1

x(1− y) = 1

x =
1

1− y

Thus the formula is f−1(y) = 1
1−y .



26. Suppose A is a set with a elements and B is a set with b elements. Prove that if f : A→ B is
bijective then a = b.

Solution:

If a > b then f cannot be 1− 1 and if a < b then f cannot be onto.

27. Prove that if f : A→ B and g : B → C are both surjective then so is g ◦ f : A→ C.

Solution:

Suppose z ∈ C. We need some x ∈ A with (x, z) ∈ g ◦ f .

Since g is surjective there is some y ∈ B with (y, z) ∈ g. Since f is surjective there is some
x ∈ A with (x, y) ∈ f .

By the definition of composition we then have (x, y) ∈ g ◦ f .


