MATH310 Exam 2 Sample Questions Solutions

1. Let A and B be sets. Prove that $A \cup B \subseteq B$ iff $A \subseteq B$.

Solution:

\longrightarrow :
Assume $A \cup B \subseteq B$. We claim $A \subseteq B$. Let $x \in A$. Then $A \in A \cup B$ and since $A \cup B \subseteq B$ we know $x \in B$.
\longleftarrow :
Assume $A \subseteq B$. We claim $A \cup B \subseteq B$. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$ or both. If $x \in A$ then since $A \subseteq B$ we know $x \in B$. If $x \in B$ then $x \in B$. Either way, $x \in B$.
2. Let A and B be sets. Prove that $A=(A-B) \cup(A \cap B)$.

Solution:

\subseteq :
Suppose $x \in A$. We claim $x \in(A-B) \cup(A \cap B)$. There are two cases to look at. If $x \notin B$ then $x \in A-B$ and so $x \in(A-B) \cup(A \cap B)$. If $x \in B$ then $x \in A \cap B$ and so $x \in(A-B) \cup(A \cap B)$.〇:
Suppose $x \in(A-B) \cup(A \cap B)$. We claim $x \in A$. There are two cases to look at. If $x \in A-B$ then $x \in A$. If $x \in A \cap B$ then $x \in A$. Either way, $x \in A$.
3. The following are false. Provide counterexamples as evidence:
(a) $\forall x \in \mathbb{R}$ with $x>0, x^{2} \geq x$.

Solution:

A counterexample is $x=0.1$.
(b) $\forall a, b, c, n \in \mathbb{N}$ with $n>1$ and n not dividing c if n divides $a c-b c$ then n divides $a-b$.

Solution:

A counterexample is $n=10, a=4, b=2$ and $c=5$.
(c) $\forall a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \nmid c$ then $a \nmid c$.

Solution:

A counterexample is $a=2, b=4$ and $c=2$.
(d) \forall sets A, B, if $A \cap B=\emptyset$ then $A=\emptyset$ or $B=\emptyset$.

Solution:

A counterexample is $A=\{1\}$ and $B=\{2\}$.
4. Prove that if $a, b \in \mathbb{Z}$ with $a \geq 2$ then $a \nmid b$ or $a \nmid(b+1)$.

Solution:

Note: We are trying to prove $P \vee Q$. We will do it by contradiction and assume $\sim P \wedge \sim Q$.
Assume $a \mid b$ and $a \mid(b+1)$. Since $a \mid b$ we know $a k=b$ for some $k \in \mathbb{Z}$ and since $a \mid(b+1)$ we know $a j=b+1$ for some $j \in \mathbb{Z}$.

Then $a j=b+1=a k+1$ so then $a(j-k)=1$ so then $a \mid 1$ but $a \geq 2$ which makes this impossible.
5. Prove that the sum of the squares of two odd integers cannot be the square of an integer.

Solution:

Assume our two odd integers are $2 k+1$ and $2 j+1$ for $k, j \in \mathbb{Z}$. The sum of the squares is $(2 k+1)^{2}+(2 j+1)^{2}=4 k^{2}+4 k+1+4 j^{2}+4 j+1=4\left(k^{2}+k+j^{2}+j\right)+2$.
This cannot be the square of an integer because the square of an odd integer has the form $(2 a+1)^{2}=4 a^{2}+4 a+1=4\left(a^{2}+a\right)+1$ and the square of an even integer has the form $(2 a)^{2}=4\left(a^{2}\right)$.
6. Indicate what you would assume when proving each of the following by contradiction. You do not need to prove either!
(a) $\forall x,(P(x) \vee Q(x)) \rightarrow(R(x) \wedge(\sim S(x)))$

Solution:

We would assume:

$$
\sim[\forall x,(P(x) \vee Q(x)) \rightarrow(R(x) \wedge(\sim S(x)))]
$$

This is equivalent to:

$$
\exists x,(P(x) \vee Q(x)) \wedge(\sim R(x) \vee S(x))
$$

(b) $P \rightarrow(Q \rightarrow R)$

Solution:

We would assume:

$$
\sim[P \rightarrow(Q \rightarrow R)]
$$

This is equivalent to:

$$
P \wedge(Q \wedge \sim R)
$$

7. Define $f(x)=x^{5}+x^{2}+1$.
(a) Prove that there is some $x \in \mathbb{R}$ with $f(x)=0$.

Solution:

Observe that $f(-2)=-32+4+1<0$ and $f(0)=1$ and since $f(x)$ is continuous the intermediate value theorem tells us there is some $x \in(-2,0)$ with $f(x)=0$.
(b) Prove that there is no $x \in \mathbb{R}$ with $x \geq 0$ and $f(x)=0$.

Solution:

You can ignore this since we've stayed away from too much calculus, but essentially it's because $f(0)=1$ and $f^{\prime}(x)=4 x^{2}+2 x$ which is positive, so $f(x)$ is increasing, when $x>0$.
8. Prove using weak induction that $\forall n \in \mathbb{N}$ we have

$$
1(1!)+2(2!)+\ldots+n(n!)=(n+1)!-1
$$

Solution:

For the base case observe that the left side is $1(1!)=1$ and the right side is $(1+1)!-1=1$, so they are equal.
For the inductive step we assume that $1(1!)+2(2!)+\ldots+n(n!)=(n+1)!-1$ and we claim that $1(1!)+2(2!)+\ldots+n(n!)+(n+1)(n+1)!=((n+1)+1)!-1$.
To this end, observe that:

$$
\begin{aligned}
1(1!)+2(2!)+\ldots+n(n!)+(n+1)(n+1)! & =(n+1)!-1+(n+1)(n+1)! \\
& =(n+1)!(1+n+1)-1 \\
& =(n+2)(n+1)!-1 \\
& =(n+2)!-1 \\
& =((n+1)+1)!-1
\end{aligned}
$$

9. Prove using weak induction that $\forall n \in \mathbb{N}$ with $n \geq 4$ that $3^{n}>5 n^{2}$.

Solution:

For the base case observe that the left side is $3^{4}=81$ and the right side is $5(4)^{2}=80$, so it is true.
For the inductive step we assume that $3^{n}>5 n^{2}$ and we claim that $3^{n+1}>5(n+1)^{2}$.
We will actually show that $3^{n+1}-5(n+1)^{2}>0$.
Observe that:

$$
\begin{aligned}
3^{n+1}-5(n+1)^{2} & =3 \cdot 3^{n}-5 n^{2}-10 n-5 \\
& \geq 3\left(5 n^{2}\right)-5 n^{2}-10 n-5 \\
& \geq 10 n^{2}-10 n-5 \\
& \geq 10 n(n-1)-5
\end{aligned}
$$

Since $n \geq 4$ we have $10 n(n-1)-5 \geq 40(3)-5$ which is certainly greater than 0 .
10. Define a sequence recursively by $a_{1}=1, a_{2}=3$ and $a_{n}=2 a_{n-1}+a_{n-2}$. Prove using strong induction that a_{n} is odd for all integers $n \geq 1$.

Solution:

For the inductive step assume that all of $a_{1}, a_{2}, \ldots, a_{n}$ are oddd. We claim a_{n+1} is odd.
Observe that for some $k, j \in \mathbb{Z}$ we have:

$$
\begin{aligned}
a_{n+1} & =2 a_{n}+a_{n-1} \\
& =2(2 k+1)+2 j+1 \\
& =2(2 k+j+1)+1
\end{aligned}
$$

This is odd.
For the base case(s) note that we reference $n-1$ so we must have $n-1 \geq 1$ and so $n \geq 2$. Thus the $n=1,2$ cases must be done separately. But $a_{1}=1$ and $a_{2}=3$ are both odd, so we are done.
11. Prove using strong induction that any postage 18 cents or greater can be made using only 4 cent and 7 cent stamps.

Solution:

For the inductive step assume we can do $18,19, \ldots, n$ cents. Since we can do $n-3$ we just do that, then add a 4-cent stamp.
For the base case(s) note that we reference $n-3$ so we must have $n-3 \geq 18$ and so $n \geq 21$. Thus the $n=18,19,20,21$ cases must be done separately.
Observe that $18=2(7)+1(4), 19=1(7)+3(4), 20=0(7)+5(4)$, and $21=3(7)+0(4)$.
12. Prove that this statement is true: $\exists n \in \mathbb{Z}, n^{3}<n$.

Solution:
Obseve that $n=-2$ works.
13. Prove that this statement is false: \forall sets A, B if $A \subseteq B$ then $A \cap B \neq B$

Solution:

Observe that a counterexample is $A=\{1\}$ and $B=\{1,2\}$.
14. Prove or disprove the statement:

$$
\forall n \in \mathbb{N}, 4^{n}>n^{4}
$$

Solution:

It is false since a counterexample is $n=4$.
15. Define the relation R on \mathbb{Z} by $a R b$ if $3 \nmid(a+2 b)$. Prove that R is not an equivalence relation.

Solution:

Observe that $0 R 1$ is true since $3 \nmid(0+2(1)$ and $1 R 3$ is true since $3 \nmid(1+2(3))$ but $0 R 3$ is false since $3 \mid(0+2(3))$.
16. Define the relation R on \mathbb{Z} by $a R b$ if $|a-b| \leq 10$. Prove that R is not an equivalence relation.

Solution:
Observe that $10 R 0$ and $20 R 10$ are true but $20 R 0$ is not, so transitivity fails.
17. Prove that $f:(\mathbb{R}-\{1\}) \rightarrow(\mathbb{R}-\{2\})$ given by $f(x)=\frac{2 x+1}{x-1}$ is invertible and find $f^{-1}(y)$.

Solution:

Observe that f is 1-1 since if we have $x_{1}, x_{2} \in \mathbb{R}-\{1\}$ with $f\left(x_{1}\right)=f\left(x_{2}\right)$ then:

$$
\begin{aligned}
\frac{2 x_{1}+1}{x_{1}-1} & =\frac{2 x_{2}+1}{x_{2}-1} \\
\left(2 x_{1}+1\right)\left(x_{2}-1\right) & =\left(2 x_{2}+1\right)\left(x_{1}-1\right) \\
2 x_{1} x_{2}-2 x_{1}+x_{2}-1 & =2 x_{1} x_{1}-2 x_{2}+x_{1}-1 \\
3 x_{2} & =3 x_{1} \\
x_{2} & =x_{1}
\end{aligned}
$$

18. Suppose $A, B \subseteq U$. Prove that: $\chi_{A \cup B}(x)=1$ iff $\chi_{A}(x)+\chi_{B}(x)>0$

Solution:

\longrightarrow :
Suppose $\chi_{A \cup B}(x)=1$ so then $x \in A \cup B$ so then $x \in A$ or $x \in B$ or both. It follows that $\chi_{A}(x)=1$ or $\chi_{B}(x)=1$ or both. Together $\chi_{A}(x)+\chi_{B}(x)>0$.
\longleftarrow :
By contrapositive, suppose $\chi_{A}(x)+\chi_{B}(x)=0$ so then $\chi_{A}(x)=0$ and $\chi_{B}(x)=0$ so then $x \notin A$ and $x \notin B$. It follows that $A \notin A \cup B$ and so $\chi_{A \cup b}(x)=0$.
19. Suppose f and g are two functions with the same domain D. Define $A=\{x \in D \mid f(x)=g(x)$. Prove $A=D$ iff $f=g$.

Solution:

\longrightarrow :
Suppose $A=D$. This means that $f(x)=g(x)$ for all $x \in D$ and so $f=g$.
$\longleftarrow:$
Suppose $f=g$. Let $x \in D$, so then $f(x)=g(x)$ and so $x \in A$. Thus $D \subseteq A$. Since $A \subseteq D$ by definition, we have $A=D$.
20. Prove that the function $f(x)=x^{2}-x$ for $x \geq 1$ is increasing.

Solution:

Suppose $x_{1}, x_{2} \in(1, \infty)$. We'll show if $x_{1}<x_{2}$ then $x_{1}^{2}-x_{1}<x_{2}^{2}-x_{2}$.
Since $x_{1}<x_{2}$ we have $x_{1}-1<x_{2}-1$. Since all of $x_{1}, x_{2}, x_{1}-1, x_{2}-1$ are positive we then have:

$$
x_{1}\left(x_{1}-1\right)<x_{2}\left(x_{2}-1\right)
$$

This is exactly our claim.
21. Prove that the function $f:(0, \infty) \rightarrow(1, \infty)$ given by $f(x)=\frac{x+1}{x}$ is surjective.

Solution:

For any $y \in(1, \infty)$ we need some x with $f(x)=y$. this means finding an x with:

$$
\begin{aligned}
\frac{x+1}{x} & =y \\
x+1 & =x y \\
x-x y & =-1 \\
x y-x & =1 \\
x(y-1) & =1 \\
x & =\frac{1}{y-1}
\end{aligned}
$$

Since $y>1$ we know that $\frac{1}{y-1} \in(0, \infty)$ and we are done.
22. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+5$ is not surjective.

Solution:

There is no x with $f(x)=0$, since such an x would have $x^{2}+5=0$ and so $x^{2}=-5$, which is not possible with $x \in \mathbb{R}$.
23. Prove that the function $f:(0, \infty) \rightarrow(1, \infty)$ given by $f(x)=\frac{x+1}{x}$ is injective.

Solution:

Suppose $x_{1}, x_{2} \in(0, \infty)$. We'll prove that if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$:

$$
\begin{aligned}
\frac{x_{1}+1}{x_{1}} & =\frac{x_{2}+1}{x_{2}} \\
\left(x_{1}+1\right)\left(x_{2}\right) & =\left(x_{2}+1\right)\left(x_{1}\right) \\
x_{1} x_{2}+x_{2} & =x_{1} x_{2}+x_{1} \\
x_{2} & =x_{1}
\end{aligned}
$$

24. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x+|x|$ is not injective.

Solution:

Observe that $f(0)=0$ and $f(-1)=0$.
25. Prove that the function $f:(\mathbb{R}-\{0\}) \rightarrow(\mathbb{R}-\{1\})$ defined by $f(x)=\frac{x-1}{x}$. is $1-1$ and find a [20 pts] formula for its inverse.

Solution:

Suppose $x_{1}, x_{2} \in \mathbb{R}-\{0\}$. We'll prove that if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$:

$$
\begin{aligned}
\frac{x_{1}-1}{x_{1}} & =\frac{x_{2}-1}{x_{2}} \\
\left(x_{1}-1\right)\left(x_{2}\right) & =\left(x_{2}-1\right)\left(x_{1}\right) \\
x_{1} x_{2}-x_{2} & =x_{1} x_{2}-x_{1} \\
-x_{2} & =-x_{1} \\
x_{2} & =x_{1}
\end{aligned}
$$

For the formula we write $y=\frac{x-1}{x}$ and solve for x :

$$
\begin{aligned}
\frac{x-1}{x} & =y \\
x-1 & =x y \\
x-x y & =1 \\
x(1-y) & =1 \\
x & =\frac{1}{1-y}
\end{aligned}
$$

Thus the formula is $f^{-1}(y)=\frac{1}{1-y}$.
26. Suppose A is a set with a elements and B is a set with b elements. Prove that if $f: A \rightarrow B$ is bijective then $a=b$.

Solution:

If $a>b$ then f cannot be $1-1$ and if $a<b$ then f cannot be onto.
27. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective then so is $g \circ f: A \rightarrow C$.

Solution:

Suppose $z \in C$. We need some $x \in A$ with $(x, z) \in g \circ f$.
Since g is surjective there is some $y \in B$ with $(y, z) \in g$. Since f is surjective there is some $x \in A$ with $(x, y) \in f$.
By the definition of composition we then have $(x, y) \in g \circ f$.

