MATH310 Exam 3 Sample Questions

1. Write down the definition of $\left\{a_{n}\right\} \longrightarrow a_{0}$ and then write down its negation with the negation pushed through then simplified.
2. Use the definition to prove:

$$
\left\{\frac{2 n}{1-3 n}\right\} \longrightarrow-\frac{2}{3}
$$

3. Use the definition to prove:

$$
\left\{\frac{5^{n}-3}{6^{n}+1}\right\} \longrightarrow 0
$$

4. Use the definition to prove:

$$
\left\{(-1)^{n}\right\} \nrightarrow 0
$$

5. Use the definition to prove:

$$
\{\sqrt{n}\} \ngtr 5
$$

6. Use the definition to prove that the following sequence does not converge:

$$
\{\sqrt{n}\}
$$

7. Prove that a sequence of numbers greater than or equal to 1 which converges must converge to a number greater than or equal to 1 .
8. Write down the definition of $\lim _{x \rightarrow x_{0}} f(x)=L$ and then write down its negation with the negation pushed through then simplified.
9. Use the definition to prove:

$$
\lim _{x \rightarrow 3} 1-x=-2
$$

10. Use the definition to prove:

$$
\lim _{x \rightarrow-1} \frac{x+1}{x+3}=0
$$

11. Use the definition to prove:

$$
\lim _{x \rightarrow 10} 5 x+2 \neq 42
$$

12. Write down the definition of " $f(x)$ is continuous at $x=x_{0}$ " and then write down its negation with the negation pushed through then simplified.
13. Prove that the following function is not continuous at $x=2$:

$$
f(x)= \begin{cases}4 x & \text { if } x \leq 2 \\ 3 x^{2} & \text { if } x>2\end{cases}
$$

14. Prove that $f(x)=3-4 x$ is continuous at $x=10$.
15. Prove that the following set is countable:

$$
\{(a, b) \mid a, b \in \mathbb{Z} \wedge a<b\}
$$

16. Prove that the set of infinite binary strings like $1010111 \ldots$ is uncountable.
17. Prove that:

$$
|(-3, \infty)|=|\mathbb{R}|
$$

18. Prove that:

$$
|\mathbb{Z}|=|\{(a, b, c) \mid a, b, c \in \mathbb{Z}\}|
$$

19. Prove that if A is a set with a supremum then the supremum must be unique.
20. Prove that if A is a set with a maximum then the maximum must be unique.
21. Prove using the definition of open that $(1,3)$ is open.
22. Prove using the definition of open that $[1,3)$ is not open.
23. Prove using the definition of open that $(1, \infty)$ is open.
24. Prove using the definition of closed that $(1,3)$ is not closed.
25. Prove using the definition of closed that $[1,3]$ is closed.
26. Prove using the definition of closed that $[1, \infty)$ is closed.
27. (Challenging 410 problem) Prove using the definition of closed that $S=\{0,5\}$ is closed.
28. Prove using the definition of closed that \mathbb{R} is closed.
29. Prove using the definition of open that \mathbb{R} is open.
30. (Challenging 410 problem) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that f is continuous and $f(x)=0$ for all $x \in S$, where $S \subseteq \mathbb{R}$ is dense. Prove that $f(x)=0$ for all x.
