NAME:

- 1. Explicitly list the elements using non-conditional set notation in each of the following sets. Use ellipses if necessary.
 - (a) $A = \{n \in \mathbb{Z} \mid 5 < n \le 10\}$ Solution:
 - (b) $B = \{x \in \mathbb{R} \mid x^2 + 6x = -5\}$ Solution:
 - (c) $C = \{x \in \mathbb{R} \mid x^2 + 3 = 0\}$ Solution:
 - (d) $D = \{5x + 3 \mid x \in \mathbb{Z}\}$ Solution:
- 2. Determine if each of the following elements is in each set. Use \in or \notin .
 - (a) Is 3 an element of $\{2x + 11 \mid x \in \mathbb{Z}\}$? Solution:
 - (b) Is \mathbb{Z} an element of \mathbb{Z} ? Solution:
 - (c) Is \emptyset an element of $\{\{\}, \{\{\}\}\}$? Solution:
 - (d) Is 5 an element of \mathbb{Q} ? Solution:
 - (e) Is 5 an element of $\mathbb{C} \mathbb{R}$? Solution:

- 3. List all the elements in $\mathcal{P}(\{\emptyset, 1\})$ Solution:
- 4. Give an example of three sets A, B and C such that $A \in B$, $A \subseteq C$ and $B \not\subseteq C$. Solution:

5. Prove that:

$$\left\{ x \in \mathbb{R} \mid |x+3| = 5 - |x| \right\} = \{-4, 1\}$$