1. We know $(0, 1)$ is uncountable. Use this fact to prove that $(0, 2)$ is uncountable.

 Hint: What if there were a bijection $f : \mathbb{Z}^+ \to (0, 2)$?

 Solution:
2. Give an example of a set $S \subseteq \mathbb{R}$ consisting of a denumerable set of points (so not an interval) which has an infimum but no minimum. No proof is necessary.

Solution:

3. Prove that the supremum of $(-\infty, 3)$ equals 3.

Solution: