MATH310 Homework 2022-07-14 Due Gradescope 11:59pm 2022-07-18

1. Determine with brief justification if the following are true or false.

(a) $\forall n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$	[3 pts]
(b) $\exists n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$	[3 pts]
(c) $\exists ! n \in \mathbb{Z}, \frac{1}{3}(n-2) \in \mathbb{Z}.$	[3 pts]
(d) $\exists ! n \in \{0, 1, 2, 3, 4\}, \frac{1}{3}(n-2) \in \mathbb{Z}.$	[3 pts]
(e) $\forall x \in \mathbb{R}, x^2 + 3 \ge 0.$	[3 pts]
(f) $\exists x \in \mathbb{R}, x^2 + 3 \ge 0.$	[3 pts]
(g) $\forall x \in \{1, 2, 3\}, 3x + 1$ is prime.	[3 pts]
(h) $\exists x \in \{1, 2, 3\}, 3x + 1$ is prime.	[3 pts]
(i) $\exists ! x \in \{1, 2, 3\}, 3x + 1$ is prime.	[3 pts]
(j) $\exists x, y \in \mathbb{Z}, x^2 - y^2 = 9.$	[3 pts]

2. Of the following only one is true. Identify which is true and which is false, and justify. [10 pts]

$$\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}, y^2 = x$$
$$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}^+, y^2 = x$$

- 3. Distribute the negation signs for each of the following, adjusting other symbols accordingly.
 - (a) $\sim (\forall x, (\sim P(x))) \equiv ?$ [5 pts] (b) $\sim (\exists x, \sim P(x) \land Q(x)) \equiv ?$ [5 pts]
 - $(c) \sim (\exists ! x, P(x)) \equiv ?$ [5 pts]
 - (d) $\sim (\forall x, \exists y, P(x, y) \land \sim Q(x, y)) \equiv ?$ [5 pts]

(e)
$$\sim (\exists x, \forall y, P(x, y) \land Q(x, y)) \equiv ?$$
 [5 pts]

(f)
$$\sim (\exists x, \exists y, P(x, y) \leftrightarrow Q(x, y)) \equiv ?$$
 [5 pts]

- 4. Negate the following.
 - (a) There was once a year in which every day was rainy or snowy. [5 pts]
 - (b) For every week there is at least one day where if it's cloudy then it snows. [5 pts]
- 5. Assume a_n is a sequence of real numbers. The formal definition that a_n converges to $a_0 \in \mathbb{R}$ [10 pts] as $n \to \infty$ is:

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, (n \ge N \to |a_n - a_0| < \epsilon)$$

Negate this statement.

6. If P(x) is some unknown open sentence find a sentence equivalent to $\exists ! x \in \mathbb{R}, P(x)$ which [10 pts] doesn't use ! in it.