1. Prove that if \(\{a_n\} \to L \) and \(\{c_n\} \to L \) and if \(\{b_n\} \) is a sequence such that \(a_n \leq b_n \leq c_n \) for all \(n \), then \(\{b_n\} \to L \). [50 pts]

2. Prove that if \(\{a_n\} \) is a sequence with the property that \(a_n \geq 0 \) for all \(n \) and \(\{a_n\} \to L \) that \(L \geq 0 \). [50 pts]