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15.1 Introduction

We consider Markov chains with absorbing states, i.e. states from which it is
impossible to leave. As a motivating example, we consider a tied game of tennis.

15.2 A Tied Tennis Game

To win a game of tennis, you have to score at least 4 points, but you must also
have at least 2 more points than your opponent. When the game is tied 3–3, it
is called a “deuce”. From here, the game continues until one player has scored
2 more points than the other. We will model a tied game using a Markov chain
(we will ignore the portion of the game before the tie is reached.) We will refer
to the two players as A and B. There are five states of this Markov chain:

1 Deuce (tie)

2 Advantage A (A has 1 more point than B)

3 Advantage B (B has 1 more point than A)

4 A wins.

5 B wins.

Our main assumption is that at any given point, there is a probability of p that
A will score (and consequently a probability of 1 − p that B will score). The
Markov chain looks like:

DeuceAdv. A Adv. BA wins B wins

p

1− p 1− p

p

p 1− p

The new thing about this type of Markov chain is that the process we are
modeling can end. We model this by declaring that once we enter the state
where A (or B) has won, we remain in that state with probability 1. Let’s
rewrite it, taking this into account and replacing the state names with the
numbers we assigned to them:

12 34 5

p

1− p 1− p

p
p 1− p

1 1
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The transition matrix is

T =


0 1− p p 0 0
p 0 0 0 0

1− p 0 0 0 0
0 p 0 1 0
0 0 1− p 0 1

 .

States 4 and 5 are called absorbing states. These are the states from which it is
impossible to leave. We refer to all other states 1, 2, 3 as transient states. Note
that it is impossible to go from an absorbing state to a transient state, so T is
not regular.

Let’s suppose that p = 0.6, so that

T =


0 0.4 0.6 0 0

0.6 0 0 0 0
0.4 0 0 0 0
0 0.6 0 1 0
0 0 0.4 0 1

 .

It is natural to ask what the probability of player A or B winning, given that
the game starts in deuce. Observe that we will not get any answers by simply
searching for the steady-state vector (as in the regular case). Here, there are
two linearly independent eigenvectors:

v̄1 =


0
0
0
1
0

 , v̄2 =


0
0
0
0
1

 .

Those alone do not seem to carry any useful information. If the game starts in
deuce, then we consider the Markov chain

x̄k+1 = T x̄k, x̄0 =


1
0
0
0
0

 .

The vector x̄k = T kx̄0 tells us the probability that we are in any of the five
states after k steps. Let’s investigate with some computations:

x̄1 =


0

0.6
0.4
0
0

 , x̄2 =


0.48

0
0

0.36
0.16

 , x̄3 =


0

0.288
0.192
0.36
0.16

 , x̄4 =


0.2304

0
0

0.5328
0.2368

 .
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For example, x̄4 tells us that after four iterations (scores), there is a 23.04%
chance that the game is back in deuce, so it is still going on. Also, there is a
53.28% chance that A has already won and a 23.68% chance that B has already
won. We continue with more computations:

x̄6 =


0.1106

0
0

0.6157
bar0.2737

 , x̄10 =


0.0255

0
0

0.6747
0.2999

 , x̄30 =


0.0000

0
0

0.6923
0.3077

 .

We see that after 30 steps, there is a nearly 0% chance that the game is still
going on in deuce, but there is a 69.23% chance that A has won and a 30.77%
chance that B has won. These numbers indicate are what we are really looking
for!

Formally, the probabilities we seek should be found in the limit

lim
k→∞

x̄k = lim
k→∞

T kx̄0.

In contrast with the regular case, this limit will depend on the initial
condition x̄0. In what follows, we will think a little more carefully about how
to compute this limit.

15.3 Absorbing Markov Chains

In a Markov chain, an absorbing state is one in which you get stuck forever (like
A wins/B wins above). By an absorbing Markov chain, we mean a Markov chain
which has absorbing states and it is possible to go from any transient state to
some absorbing state in a finite number of steps.

Suppose we have an absorbing Markov chain with r transient states t1, . . . , tr
and s absorbing states a1, . . . , as. The whole Markov chain has r+s states, and
we order them as follows:

t1, . . . , tr, a1, . . . , as.

The transition matrix will have the following “block” form

T =

[
Q 0̄r×s
R Is

]
,

where

• Q is an r× r matrix which holds the probabilities of moving from a tran-
sient state to another transient state.

• R is an s×r matrix which holds the probabilities of moving from a transient
state to an absorbing state.
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• 0̄r×s is the r× s matrix of all 0’s. These 0’s represent the probabilities of
moving from an absorbing state to a transient state (which is impossible).

• Is is the s×s identity matrix, which holds the probabilities of transitioning
between absorbing states (which is impossible as we just get stuck in the
same absorbing state.)

In the tennis match example, the transition matrix is

T =


0 0.4 0.6 0 0

0.6 0 0 0 0
0.4 0 0 0 0
0 0.6 0 1 0
0 0 0.4 0 1

 ,

so we have

Q =

 0 0.4 0.6
0.6 0 0
0.4 0 0

 , R =

[
0 0.6 0
0 0 0.4

]
.

We are interested in limk→∞ T kx̄0, so it is natural to investigate powers of T .
The block form of T allows us to compute:

T 2 =

[
Q 0̄r×s
R Is

] [
Q 0̄r×s
R Is

]
=

[
Q2 0̄r×s

RQ + R Is

]
T 3 =

[
Q 0̄r×s
R Is

] [
Q2 0̄r×s

RQ + R Is

]
=

[
Q3 0̄r×s

RQ2 + RQ + R Is

]
T 4 =

[
Q 0̄r×s
R Is

] [
Q3 0̄r×s

RQ2 + RQ + R Is

]
=

[
Q4 0̄r×s

RQ3 + RQ2 + RQ + R Is

]
.

In general, the pattern is

T k =

[
Qk 0̄r×s

R + RQ + . . . + RQk−1 Is

]
=

[
Qk 0̄r×s

R
∑k−1

i=0 Qi Is

]
.

When we take a limit as k →∞, we will encounter the series

∞∑
i=0

Qi = I + Q + Q2 + Q3 + . . .

We’ve seen in the past that this series converges to (I−Q)−1 under the assump-
tion that the column sums of Q are all less than 1. For our tennis example,

Q =

 0 0.4 0.6
0.6 0 0
0.4 0 0


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the column sums are 1, 0.4, 0.6; unfortunately they are not all less than 1. How-
ever,

Q2 =

0.48 0 0
0 0.24 0.36
0 0.16 0.24


does have column sums less than 1 (and the same is true for Q3, Q4, . . .) This
turns out to be enough to guarantee convergence. For a general absorbing
Markov chain, some power Qk of Q must have column sums less than 1 because
the column sums of T k are exactly 1. It then follows by considering our formula
above for T k, in which Qk is the upper left block. The definition of absorbing
Markov chain will imply that the lower left block will have nonzero entries in
each column for large enough k.

Theorem 15.3.0.1. For an absorbing Markov chain, some power Qk will have
column sums less than 1. Consequently,

∞∑
i=0

Qi = I + Q + Q2 + Q3 + . . . = (I −Q)−1.

Since this series converges, its terms must go to zero. So we also obtain

lim
k→∞

Qk = 0̄r×r.

Putting it together gives the following important result.

Theorem 15.3.0.2. For an absorbing Markov chain with T =

[
Q 0̄r×s
R Is

]
, we

have

lim
k→∞

T k =

[
0̄r×r 0̄r×s

R(Ir −Q)−1 Is

]
.

In our tennis example, we have

T =


0 0.4 0.6 0 0

0.6 0 0 0 0
0.4 0 0 0 0
0 0.6 0 1 0
0 0 0.4 0 1

 , Q =

 0 0.4 0.6
0.6 0 0
0.4 0 0

 , R =

[
0 0.6 0
0 0 0.4

]
.

We can compute directly (using MATLAB) that

(I3 −Q)−1 =

1.9231 0.7692 1.1538
1.1538 1.4615 0.6923
0.7692 0.3077 1.4615


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and

R(I3 −Q)−1 =

[
0.6923 0.8769 0.4154
0.3077 0.1231 0.5846

]
.

Consequently,

lim
k→∞

T k =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.6923 0.8769 0.4154 1 0
0.3077 0.1231 0.5846 0 1

 .

Now we are in a position to properly answer questions about the tennis match.

Suppose the game starts in deuce, so that x̄0 =
[
1 0 0 0 0

]T
. Then to

find the probabilities of what state we are in “after a long time”, we need to
compute

lim
k→∞

T kx̄0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.6923 0.8769 0.4154 1 0
0.3077 0.1231 0.5846 0 1




1
0
0
0
0

 =


0
0
0

0.6923
0.3077

 .

This says that the probability that A wins is 0.6923 and the probability that
B wins is 0.3077. There is a probability of 0 that the game is still going on
in Deuce or Advantage A/B. Note that multiplying by this x̄0 just extracted
the first column. Further, the probabilities we were interested in were just the
entries of the first column of R(I3 −Q)−1.

Theorem 15.3.0.3. For an absorbing Markov chain, the (i, j)-entry of R(Ir −
Q)−1 is the probability of ending in absorbing state ai given that we started in
transient state tj .

For example, the second column says that if the game is in Advantage A, then
A has a 0.8769 probability of winning, whereas B has a 0.1231 probability of
coming back and winning.

The matrix (Ir −Q)−1 contains more useful information.

Theorem 15.3.0.4. For an absorbing Markov chain,

1. The (i, j)-entry of (Ir − Q)−1 contains the expected number of visits to
transient state ti given that we started in transient state tj .

2. The j-th column sum of (Ir−Q)−1 contains the expected number of time
steps before absorption, given that we started in transient state tj .
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The second statement follows from the first. To understand the first, we need
to view (Ir −Q)−1 as the infinite series

(Ir −Q)−1 = Ir + Q + Q2 + Q3 + . . .

The (i, j)-entry of (Ir−Q)−1 is the sum of the (i, j)-entries of each of the powers
Qk. Recall that the (i, j)-entry of Qk contains the probability of starting in tj
and ending in ti after exactly k steps. The infinite sum of all these probabilities
is the expected value described in the theorem.

For our tennis example,

(I3 −Q)−1 =

1.9231 0.7692 1.1538
1.1538 1.4615 0.6923
0.7692 0.3077 1.4615

 .

The first entry says that if the game starts in deuce, then the expected number
of times it will be in deuce is 1.9231 (Note this counts the starting deuce.
Consequently, all diagonal entries should be at least 1.) The expected number
is like an average. If we played a bazillion games of tennis starting in deuce, we
would find that, on average, we had 1.9231 deuces per game.

The first column sum is 3.8462. The interpretation is that (assuming the game
starts in deuce), it will take, on average, 3.8462 scores until the game ends. As
an example, if A and B play 30 games of tennis, and we assume there is a score
every minute, then we should expect that they played for a total of

(30 games)(3.8462 scores/game)(1 minute/score) = 115.386 minutes.

(Again, all games start in deuce. They are not playing the beginning portion of
a traditional tennis game.)

If we return to the original

T =


0 1− p p 0 0
p 0 0 0 0

1− p 0 0 0 0
0 p 0 1 0
0 0 1− p 0 1


before we assigned a value to p, we have

Q =

 0 1− p p
p 0 0

1− p 0 0

 , R =

[
0 p 0
0 0 1− p

]
.

Using MATLAB, we can invert and get

(I3 −Q)−1 =
1

2p2 − 2p + 1

 1 1− p p
p p2 − p + 1 p2

1− p (1− p)2 p2 − p + 1


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and

R(I3 −Q)−1 =
1

2p2 − 2p + 1

[
p2 p(p2 − p + 1) p3

(1− p)2 (1− p)3 (1− p)(p2 − p + 1)

]
.

Looking at these allows us to answer questions in terms of p, the probability
that A scores. For example, the expected number of scores before the game
ends is the first column sum of (I3 −Q)−1, which is

1

2p2 − 2p + 1
(1 + p + (1− p)) =

2

2p2 − 2p + 1
.

By looking at the graph of this function, we see that its maximum is when
p = 0.5, and the expected number of scores is 4. (Does it make sense why the
maximum should be at p = 0.5?) We also see that if p = 0 or p = 1, the
expected number of scores is exactly 2. (Again, does it make sense?)

Exercise 15.1. Find the smallest value for p such that A is more likely to win
when the game is in Advantage B.
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