
Cryptography

Justin Wyss-Gallifent

July 21, 2021

13.1 Introduction . 2
13.2 Background . 2
13.3 Preliminary Notes . 2
13.4 Basic Encryption Technique . 3

13.4.1 How to Encrypt and Decrypt 3
13.4.2 Practical Note . 4

13.5 Key Creation and Sharing . 4
13.6 Breaking the Key . 7

13.6.1 Circumstances . 7
13.6.2 Brute Force . 8
13.6.3 Refining Brute Force . 10

13.7 System of Equations Mod 2 . 15
13.8 Matlab . 18
13.9 Exercises . 22

1

13.1 Introduction

The goal of this chapter is to present a method of encryption which forms the
basis of that used in many applications and show how linear algebra can be used
to break this encryption. The basic method we present is not used as-is because
it is fairly easily broken but it forms a building block for more sophisticated
methods.

13.2 Background

Imagine we have a stream of bits, 0 and 1, and we wish to encrypt them dy-
namically, meaning as each new bit comes along we have to encrypt it and send
it along. It would seem reasonable to replace some 0 by 1 and vice versa in a
way that the recepient would know how to undo the process.

Places where encryption like this may be useful would be things that are real-
time critical like voice conversations, dynamical exchange of data, etc. Varia-
tions on the method we’ll discuss are used in the Bluetooth protocol, various
protocols used with GSM phones and various protocols used by the cable and
other communication industries to scramble digital signals.

13.3 Preliminary Notes

A few things for this chapter:

(a) Modulo 2 arithmetic.

Definition 13.3.0.1. Modulo 2 arithmetic is arithmetic defined in such
a way that all even numbers are considered equivalent to 0 and all odd
numbers are considered equivalent to 1.

We write a ≡ bmod 2 if a and b are equivalent to one another and typically
when we do operations we will write the result as either 0 or 1.

Example 13.1. For example we have the following:

3 ≡ 1 mod 2

1 + 1 ≡ 0 mod 2

(3)(5) ≡ 1 mod 2

−1 ≡ 1 mod 2

2

and so on.

This also extends to matrices. For example:

[
1 0
1 1

] [
1 1
1 1

]
≡
[

1 1
0 0

]
mod 2

(b) We’ll use the notation [a; b; c] often to denote the vector [a b c]T because it’s
a bit neater.

(c) We’ll often have vectors whose entries are bits, either 0 or 1, so we might
write c̄ ∈ {0, 1}5 for example to indicate that c̄ is a vector with five entries
either 0 or 1.

13.4 Basic Encryption Technique

13.4.1 How to Encrypt and Decrypt

Suppose Alice wishes to send the following binary stream to Bob without Eve
intercepting it and understanding it. This is the plaintext and could go on
indefinitely:

10100011001111101011010111101010010001...

In order to encrypt this so that Eve may not understand it if she intercepts it,
what Alice and Bob can do is the following: First they create and share a key
consisting of a binary string such as 11010. For now let’s not worry about how
that key is created or shared.

First a quick observation:

Fact 13.4.1.1. If we start with 0 or 1 then doing addition mod 2 twice with
the same value (0 or 1) cancels out. In other words we see:

0 + 0 ≡ 0 mod 2 then 0 + 0 ≡ 0 mod 2
0 + 1 ≡ 1 mod 2 then 1 + 1 ≡ 0 mod 2
1 + 0 ≡ 1 mod 2 then 1 + 0 ≡ 1 mod 2
1 + 1 ≡ 0 mod 2 then 0 + 1 ≡ 1 mod 2

Alice takes her binary stream and does addition bit-by-bit with the key mod 2.
When she runs out of key she just repeats the key from the beginning. In
this way we think of her key as infinitely long and having period 5. We’ll use
the term “key” to refer to both the repeated fragment and the infinitely long
repetition. She then sends the bits one by one.

We can view this as follows:

3

Plaintext 10100 01100 11111 01011 01011 11010 10010 001...

+ Key 11010 11010 11010 11010 11010 11010 11010 110... bit-by-bit
≡ Ciphertext 01110 10110 00101 10001 10001 00000 01000 111... mod 2

She sends this final string, the ciphertext, to Bob who decrypts it by doing +m2
again just like Alice did, but this undoes the encryption as noted above.

Ciphertext 01110 10110 00101 10001 10001 00000 01000 111...

+ Key 11010 11010 11010 11010 11010 11010 11010 110... bit-by-bit
≡ Plaintext 10100 01100 11111 01011 01011 11010 10010 001... mod 2

If Eve intercepts the ciphertext in the middle of the process she has no way of
knowing what either the key or the plaintext are.

Keep in mind that in reality both Alice and Bob have the key at their disposal
and the message is dealt with bit-by-bit. On a per-bit basis they cycle through
the key and add mod 2 as they go. When they get to the end of the key they
simply start again at the beginning.

13.4.2 Practical Note

This method is nice primarily for two reasons. First, it is very fast. Second,
doing mod 2 is the same as doing an XOR (exclusive or) and can easily be built
into hardware circuits.

13.5 Key Creation and Sharing

The major issue with this is that the key needs to be created and shared between
Alice and Bob before any communication can take place.

There are various ways that this can happen. When you rent a cable box the
key might be hard-coded into a chip in the cable box, when you use a GSM
phone the key might be hard-coded in the same way, and when you connect
two Bluetooth devices by typing a code given by one machine into the other
machine you are effectively sharing a key.

In both of these cases one problem is that a key with a larger period is more
secure (keys with smaller periods can be brute-force guessed, for example there
are only 32 possible keys of period 5 and yet a key with a larger period takes
more memory to store (in the hardcoded case) and more time to manually
transfer (in the Bluetooth case). In light of this we might ask if it is possible
to create a key with a longer period using less data than the period? In other
words, for example, could six bits of data be used to create a key with a period
of more than six?

The answer is that we could create the key recursively in the following sense:
We give some initial number of bits and then we define successive bits in terms

4

of previous ones.

Example 13.2. We could assign a key x1x2x3... with xi ∈ {0, 1} by assigning:

x1 = 0, x2 = 1, and x3 = 1

and for n ≥ 4 we set:

xn ≡ 1xn−3 + 0xn−2 + 1xn−1 mod 2

So then:

x4 ≡ 1x1 + 0x2 + 1x3 ≡ 1 mod 2

x5 ≡ 1x2 + 0x3 + 1x4 ≡ 0 mod 2

And so on. If we do this repeatedly we get:

01110100111010...

which we notice is repeating after 7 bits, meaing we’ve created the key 0111010

having period 7.

Thus by giving s̄ = [0; 1; 1] (initial bits) and c̄ = [1; 0; 1] (recursive coefficients)
we generate a key with period 7 using only 6 bits.

Definition 13.5.0.1. A linearly recursively defined key of length i can be de-
fined by two vectors s̄ = [x1; ...;xi] ∈ {0, 1}i and c̄ = [1; ...; ci] ∈ {0, 1}i. The
key then starts with the bits x1...xi and for n ≥ i + 1 we have

xn ≡ 1xn−i + c2xn−i+1 + ... + ci−1xn−2 + cixn−1 mod 2

That is, the first vector gives the starting bits of the key and the second vector
gives the coefficients of the linear combination which tells us how to build each
subsequent bit of the key as a linear combination of the previous i bits.

We insist that c1 = 1 because otherwise any given xn depends only on the
previous i− 1 bits instead of the previous i and so technically it would not have
generating length i. It’s certainly possible to allow s̄ and c̄ to have different
lengths (necessarily ||c̄|| ≤ ||s̄||) but then in reality the length is just the length
of c̄ and the extra bits at the start of s̄ aren’t really part of the problem in the
same sense.

We write the generating pair as:

K = {s̄, c̄}

5

Theorem 13.5.0.1. A linear recursively defined key of length i is reversible,
meaning if we know any i bits we can recover any previous bits.

Proof. Suppose we have the i bits:

xkxk+1...xk+i+1

We can calculate xk−1 as follows. Since we know:

xk+i+1 ≡ xk−1 + c2xk + c3xk+1 + ... + cixk+i mod 2

We can simply solve for xk−1. Note that +cj ≡ −cj mod 2 and so the solution
is:

xk−1 ≡ c2xk + c3xk+1 + ... + cixk+i + xk+i+1 mod 2

Definition 13.5.0.2. The period of the key is the shortest number of bits after
which the key repeats.

Theorem 13.5.0.2. A linearly recursively defined key of length i ≥ 1 has
period less than or equal to 2i − 1.

Proof. Consider a string of bits:

x1x2x3x4x5x6x7x8x9x10x11...

Consider the list of strings of bits (each row is a string of bits):

x1 x2 ... xi

x2 x3 ... xi+1

...
...

...
...

x2i x2i+1 ... x2i+i−1

If any of these strings were all zeros then the key would be entirely zero because
the fact that it’s length i means that each successive bit and previous bit is a
linear combination of zeros. If the key were entirely zero it would have period
1 ≤ 2i − 1 and we are done.

So suppose none of these strings are all zeros. In this list there are 2i strings
in this list and each string has i bits. However there are only 2i − 1 possible

6

strings of nonzero strings of i bits (i bits and 2 choices per bit, then throw out
00...0). Consequently two of them must be identical.

Thus there exists 1 ≤ j < k ≤ 2i with:

xjxj+1...xj+i−1 = xkxk+1...xk+i+1

But then since the key is recursively defined with length i we know that this
equality continues beyond the bits shown. In other words:

xjxj+1... = xkxk+1...

Thus the key repeats after k − j bits. Since k ≤ 2i and j ≥ 1 we have:

k − j ≤ 2i − 1

It is not infrequent to get a value of exactly 2i − 1 as shown:

Example 13.2 Revisited. The pair K = {[0; 1; 1], [1; 0; 1]} has length 3 and
generates a key with period 23 − 1 = 7.

Okay, our example is not particularly impressive. Here are two more:

Example 13.3. The pair K = {[0; 1; 0; 0; 0], [1; 0; 1; 0; 0]} has length 5 and
generates the key with period 25 − 1 = 31 shown here to 62 bits with a space
to see the point at which it repeats.

0100001001011001111100011011101 0100001001011001111100011011101...

Example 13.4. For any s̄ ∈ {0, 1}31 if c̄ ∈ {0, 1}31 with c̄ = [1; 0; 0; 1; 0; ...; 0]
then the pair K = {s̄, c̄} generates a key with period 231− 1 = 2147483647, not
shown.

13.6 Breaking the Key

13.6.1 Circumstances

The approach we take is to assume that we have obtained some fragment of the
key which we’ll label as x1x2x3.... We’re not assuming this is the start of the
key, despite the labeling.

7

This could happen if we obtain both some ciphertext and some matching plain-
text (maybe by snooping) since we can add the two bit-by-bit mod 2 in order
to get the correspoding part of the key.

The goal is to figure out a recursion relation which generates this key fragment,
then use it to generate enough key to decrypt the entire ciphertext.

13.6.2 Brute Force

One option could be a brute-force approach. Since the recursion relation has
each bit being a linear combination of some number of previous bits we could
take the portion of the key and take a trial-and-error approach.

What this means is we first check if a linearly recursively defined key of length
2 works. If not, we check if a linearly recursively defined key of length 3 works,
then if a linearly recursively defined key of length 4 works, and so on until we
either find the recursion relation or run out of key.

This is best illustrated with an example:

Example 13.5. Suppose we obtain the following portion of the key:

0110101111000100...

We could proceed by asking progressively as follows:

Question: Could a linearly recursively defined key of length 2 work?

If so then we would have x1 = 0, x2 = 1, and xn = c1xn−2 + c2xn−1 for n ≥ 3.
Applying this to x3 and x4 we get:

x3 ≡ c1x1 + c2x2 mod 2

x4 ≡ c1x2 + c2x3 mod 2

which fills in to:

1 ≡ c1(0) + c2(1) mod 2

0 ≡ c1(1) + c2(1) mod 2

or as a matrix equation:

[
0 1
1 1

] [
c1
c2

]
≡
[

1
0

]
mod 2

This matrix equation has the solution c1 = 1, c2 = 1 so we might guess that we
have

8

xn ≡ xn−2 + xn−1 mod 2 for n ≥ 3

If we test this on the key fragment (for n ≥ 5) we find that x5 ≡ x3 + x4 mod 2
but x6 6≡ x4 + x5 mod 2 so clearly that didn’t work.

Question: Could a linearly recursively defined key of length 3 work?

If we proceed as above we get the matrix equation:

0 1 1
1 1 0
1 0 1

 c1
c2
c3

 ≡
 0

1
0

 mod 2

This matrix equation has no solution. This can be seen easily because the
columns of the matrix each add to 0 mod 2 but the target column does not and
so it is not a linear combination of the columns of the matrix.

Note: We may also see that keys of length 2 or 3 cannot work since the key has
000 in it, which would produce only 0s afterwards.

Question: Could a linearly recursively defined key of length 4 work?

If we proceed as above we get the matrix equation:

0 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1

c1
c2
c3
c4

 ≡

1
1
0
1

 mod 2

This matrix equation has the solution c1 = 1, c2 = 1, c3 = 0, c4 = 0 so we might
guess that we have

xn ≡ xn−4 + xn−3 mod 2 for n ≥ 5

If we test this on the remaning bits of the key fragment we find it works, so we
believe, with the information we have, that this is it.

Before proceeding there are a few things that we should note:

• The matrix equation we’re solving at each step is not as confusing as
it may look. When testing whether a linearly recursively defined key of
length m could work we simply look at:

x1 x2 ... xm

x2 x3 ... xm+1

...
...

. . .
...

xm xm+1 ... x2m−1

c1
c2
...
cm

 ≡

xm+1

xm+2

...
x2m

 mod 2

9

Notice the first column is the m bits of the key starting at x1, the second
column is the m bits of the key starting at x2, and so on, finishing with
the column vector on the right being the m bits of the key starting at
xm+1.

• This is computationally intensive.

13.6.3 Refining Brute Force

Luckily there is a theorem which comes to our rescue. Note that everything is
mod 2, meaning a determinant of a matrix is either 0 or 1.

Theorem 13.6.3.1. For any given m define

Mm =

x1 x2 ... xm

x2 x3 ... xm+1

...
...

. . .
...

xm xm+1 ... x2m−1

Then:

(i) If det(Mm) ≡ 1 mod 2 then no linear recursion of length less than m will
satisfy the sequence x1, x2, ..., x2m−1.

(ii) If det(Mm) ≡ 0 mod 2 and if there is a linear recursion of length m which
does satisfy the sequence x1, x2, ..., x2m−1. then there is a linear recursion
of length less than m which will also satisfy that sequence.

Proof. Proof of (i) by contrapositive:

Suppose for a given m some linear recursion of length i < m will work. Consider
the matrix:

Mm =

x1 x2 ... xm

x2 x3 ... x1+m

...
...

. . .
...

xi+1 xi+2 ... xi+m

...
...

. . .
...

xm x1+m ... x2m−1

(Note that it’s possible that i + 1 = m in which case those are the same row.)

The fact that a linear recursion of length i < m works means that there are
coefficients c1, ..., ci such that the following are all true:

10

xi+1 ≡ c1x1 + c2x2 + ... + cixi mod 2

xi+2 ≡ c1x2 + c2x3 + ... + cixi+1 mod 2

... ≡
...

xi+m ≡ c1xm + c2xm+1 + ... + cixi+m mod 2

As far as Mm this system is simply saying that:

Row i + 1 ≡ c1(Row 1) + c2(Row 2) + ... + ci(Row i) mod 2

So that the (i + 1)th row of the matrix is a linear combination of the previous
rows. Hence the rows are linearly dependent and det(Mm) = 0.

The proof of (ii) is more technical and is omitted.

The ramifications of this proof are important.

Theorem 13.6.3.2. The length of the shortest linear recursion relation will be
the largest m for which det(Mm) ≡ 1 mod 2.

Proof. There is definitely a shortest linear recursion relation that works because
there is definitely a linear recursion relation that works. Suppose its length is m,
then det(Mm) ≡ 1 mod 2 because otherwise det(Mm) ≡ 0 mod 2 and a shorter
one would work by (ii). Moreover for k > m we must have det(Mk) ≡ 0 mod 2
otherwise m would not work by (i).

Consequently, assuming we can obtain such an m the solution will be given by
solving the matrix equation corresponding to, all mod 2:

c1x1 + c2x2 + ... + cmxm = xm+1

c1x2 + c2x3 + ... + cmxm+1 = xm+2

... = ...

c1xm + c2xm+1 + ... + cmx2m−1 = x2m

which is

11

x1 x2 ... xm

x2 x3 ... xm+1

...
...

. . .
...

xm xm+1 ... x2m−1

c1
c2
...
cm

 ≡

xm+1

xm+2

...
x2m

 mod 2

Of course there is still an issue - we can test determinants all day but we’ll never
know if we have the largest value m for which det(Mm) ≡ 1 since how could
we?

The approach we take is therefore as follows:

Refined Brute Force Method

(a) Calculate det(Mm) mod 2 for m = 1, 2, 3, ... until we encounter a 1 followed
by some reasonable number of 0s. The term “reasonable” is ambiguous and
might depend upon the technology being used.

(b) Solve the matrix equation:

x1 x2 ... xm

x2 x3 ... xm+1

...
...

. . .
...

xm xm+1 ... x2m−1

c1
c2
...
cm

 ≡

xm+1

xm+2

...
x2m

 mod 2

(c) Check whether the recursion relation given by the solution works for the
entire key fragment. If so, stop and conclude we have found the recursion
relation. If not, proceed with higher values of m.

(d) If we run out of key fragment before encountering a solution then we simply
do not have enough key fragment to find the recursion relation.

Example 13.6. Suppose we obtain the following key fragment consisting of
fifty bits:

10011011001001010001110100010001111100111110111101

We calculate determinants of Mm for m = 1, 2, 3, ... until we see a few 0s in a
row. All are mod 2:

12

det(M1) ≡ 1

det(M2) ≡ 0

det(M3) ≡ 1

det(M4) ≡ 1

det(M5) ≡ 0

det(M6) ≡ 1

det(M7) ≡ 0

det(M8) ≡ 0

det(M9) ≡ 1

det(M10) ≡ 0

det(M11) ≡ 0

det(M12) ≡ 0

det(M13) ≡ 0

We notice that we’ve run into a string of 0s after m = 9 so we suggest that
m = 9 might give us the solution since it gave the seemingly final determinant
of 1.

We therefore examine the matrix equation for m = 9:

1 0 0 1 1 0 1 1 0
0 0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0 1
1 1 0 1 1 0 0 1 0
1 0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0 1
1 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 1 0

c1
c2
c3
c4
c5
c6
c7
c8
c9

≡

0
1
0
0
1
0
1
0
0

mod 2

This has the solution c1 = 1, c2 = 0, c3 = 1, c4 = 1, c5 = 0, c6 = 1, c7 = 0,
c8 = 0, c9 = 0 which suggests that xn ≡ xn−9 + xn−7 + xn−6 + xn−4 mod 2 for
n ≥ 9.

If we test this we find that it works on all of our key fragment so we accept it
as a solution.

If this had failed to work we would have needed to calculate further determinants
knowing another 1 followed by 0s on the horizon.

13

Example 13.7. Suppose we obtain the following key fragment consisting of
fifty bits:

01110111110111110101111110001000011110110001111011

We calculate determinants of Mm for m = 1, 2, 3, ... until we see a few 0s in a
row. All are mod 2:

det(M1) ≡ 0

det(M2) ≡ 1

det(M3) ≡ 1

det(M4) ≡ 1

det(M5) ≡ 1

det(M6) ≡ 0

det(M7) ≡ 1

det(M8) ≡ 0

det(M9) ≡ 0

det(M10) ≡ 0

We notice that we’ve run into a string of 0s after m = 7 so we suggest that
m = 7 might give us the solution since it gave the seemingly final determinant
of 1.

We therefore examine the matrix equation for m = 7:

0 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 0
1 1 1 1 1 0 1
1 1 1 1 0 1 1

c1
c2
c3
c4
c5
c6
c7

≡

1
1
1
0
1
1
1

mod 2

This has the solution c1 = 0, c2 = 1, c3 = 0, c4 = 0, c5 = 0, c6 = 0, c7 = 0
which suggests that

xn ≡ xn−6 mod 2 for n ≥ 8

However this has a problem in that c1 6= 1. Moreover even if we overlook that
and test it for our key fragment we find it fails because x19 6≡ x13 mod 2.

So then we calculate further determinants of Mm. All are mod 2:

14

det(M11) ≡ 0

det(M12) ≡ 1

det(M13) ≡ 0

det(M14) ≡ 0

det(M15) ≡ 0

Aha, a new 1 showed up at m = 12, followed by some 0s.

We therefore examine the matrix equation for m = 12:

0 1 1 1 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 0 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 1 0 1 0
1 1 0 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 1 0 1 0 1 1
0 1 1 1 1 1 0 1 0 1 1 1
1 1 1 1 1 0 1 0 1 1 1 1

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12

≡

1
1
1
1
0
1
0
1
1
1
1
1

mod 2

This has the solution c1 = 1, c2 = 1, c3 = 0, c4 = 1, c5 = 0, c6 = 1, c7 = 1,
c8 = 0, c9 = 1, c10 = 0, c11 = 0, c12 = 0 which suggests that

xn ≡ xn−12 + xn−11 + xn−9 + x7 + x6 + x4 mod 2 for n ≥ 13

If we test this we find that it works on all of our key fragment so we accept it
as a solution.

13.7 System of Equations Mod 2

In this chapter we needed to solve certain matrix equations mod 2. To do this
we should be aware of a few points.

Theorem 13.7.0.1. A square matrix A with entries in {0, 1} is invertible mod
2 if and only if det(A) ≡ 1 mod 2.

Note that “is invertible mod 2” means there is another matrix B, also having
entries in {0, 1}, such that AB ≡ BA ≡ I mod 2.

15

Proof. ⇐:

If A is invertible mod 2 then there is a matrix B with entries in {0, 1} and with
AB ≡ I mod 2. Taking the determinant of both sides yields:

det(A)det(B) ≡ det(I) mod 2

which is the same as:

det(A)det(B) ≡ 1 mod 2

So that both det(A) ≡ det(B) ≡ 1 mod 2.

⇒:

Suppose det(A) ≡ 1 mod 2. Then det(A) 6= 0 and so A has an inverse which
can be calculated via the adjugate method:

[
1

det(A)
adj(A)

]
A = I

If we multiply both sides by det(A):

adj(A)A = det(A)

Then take both sides mod 2:

adj(A)A ≡ I mod 2

This shows us that:

A−1 ≡ adj(A) mod 2

So that in the mod 2 case if the matrix has determinant 1 mod 2 then the inverse
equals the adjugate.

Moreover from a calculational perspective since the adjugate is just the inverse
multiplied by the determinant, in order to find the inverse of A mod 2 we can
simply take the inverse of A in the regular sense and multiply the determinant
of A, then by reducing mod 2.

16

Example 13.8. Consider the matrix:

A =

1 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1

We have det(A) = −1 and

A−1 =

1 0 0 0
0 0 −1 1
0 −1 1 0
0 1 0 0

Therefore:

det(A)A−1 =

−1 0 0 0

0 0 1 −1
0 1 −1 0
0 −1 0 0

And taken mod 2 we get:

1 0 0 0
0 0 1 1
0 1 1 0
0 1 0 0

So this is the inverse of A mod 2.

This is useful when we are solving matrix equations mod 2.

Example 13.9. Consider the matrix equation:

1 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1

 c̄ =

1
1
1
1

Since the determinant of the matrix equals 1 mod 2 we can find the solution
mod 2 by multipying both sides by the inverse mod 2:

17

1 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1

 c̄ =

1
1
1
1

1 0 0 0
0 0 1 1
0 1 1 0
0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1

 c̄ =

1 0 0 0
0 0 1 1
0 1 1 0
0 1 0 0

1
1
1
1

c̄ =

1
0
0
1

13.8 Matlab

The following Matlab m-file will generate n digits of the key with initial vector
s and coefficient vector c:

function x = genkey(s,c,n)

% Generates n bits of the recursively defined key

% using initial string s and vector c.

% The result is returned as a vector

% so it’s usually good to wrap it in

% transpose or ’ it to look at it.

% Usage:

% >> genkey([1;0;1;1],[1;1;0;0],10)’

% ans =

% 1 0 1 1 1 1 0 0 0 1

x = s;

l = length(s);

for j = [l+1:n]

x = [x;mod(transpose(x(j-l:j-1))*c,2)];

end

end

Usage as per the help:

>> genkey([1;0;1;1],[1;1;0;0],10)’

ans =

1 0 1 1 1 1 0 0 0 1

18

The following Matlab m-file will generate the matrix Mm for a specific m for a
specific key fragment.

function M = genmatrixfromfragment(v,m)

% Generates the matrix M_m from the key fragment vector v.

% Note that the length of v must be >= 2m-1.

% Usage:

% >> genmatrixfromfragment([1;0;1;1;0;1;1;1;1;0;1;1;0],3)

% ans =

% 1 0 1

% 0 1 1

% 1 1 0

M = [];for i=1:m;M=[M v(i:i+m-1)];end;

end

Usage as per the help:

>> genmatrixfromfragment([1;0;1;1;0;1;1;1;1;0;1;1;0],3)

ans =

1 0 1

0 1 1

1 1 0

If you don’t give it enough key fragment it will error:

>> genmatrixfromfragment([1;0;1;1;0;1;1;1;1;0;1;1;0],10)

Index exceeds matrix dimensions.

Error in genmatrixfromfragment (line 10)

M = [];for i=1:m;M=[M v(i:i+m-1)];end;

Notice that we can generate the matrix from the key vectors by combining the
two commands:

>> v=genkey([1;0;1;1;1],[1;1;0;0;1],20);

>> genmatrixfromfragment(v,4)

ans =

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

Or in one fell swoop:

19

>> genmatrixfromfragment(genkey([1;0;1;1;1],[1;1;0;0;1],20),4)

ans =

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

Here is Example 13.6 worked out via Matlab. First we define the vector con-
taining the key fragment. Here it’s broken over several lines to fit on the page
but of course it doesn’t have to be entered this way.

x=[

1;0;0;1;1;0;1;1;0;0;1;0;0;1;0;1;0;0;0;

1;1;1;0;1;0;0;0;1;0;0;0;1;1;1;1;1;0;0;

1;1;1;1;1;0;1;1;1;1;0;1];

Then we check determinants of Mm until we hit a 1 followed by a bunch of
0s. We can do this with a for loop. The choice of going to m = 15 is just
experimenting. Here we’ve also used round to round the determinant before
taking the mod. The reason for this is that the precision of the determinant can
be slightly off and so rounding it makes sure that we get the integer that we
know we should get:

20

>> for m=1:15

mod(round(det(genmatrixfromfragment(x,m))),2)

end

ans =

1

ans =

0

ans =

1

ans =

1

ans =

0

ans =

1

ans =

0

ans =

0

ans =

1

ans =

0

ans =

0

ans =

0

ans =

0

ans =

0

ans =

0

So now we see that m = 9 might be our goal. Thus we solve Mmc̄ = [xm+1; ...;x2m]
using the inverse of Mm mod 2, again using round in there:

21

>> M = genmatrixfromfragment(x,9);

>> c = mod(round(det(M)*inv(M)*x(10:18)),2)

c =

1

0

1

1

0

1

0

0

0

Finally we need to check that the key that this generates matches the key
fragment at the start.

If we take the first nine bits from the key fragment and these nine bits we found
and we use them to generate a key with the same length as the original fragment
we can compare this generated key with the key fragment to see if this actually
works. To be really fancy we can just take the difference between the vectors:

>> norm(genkey(x(1:9),c,length(x)) - x)

ans =

0

13.9 Exercises

Exercise 13.1. Encrypt the stream 10110100010100101 using the key 10111.

Exercise 13.2. Encrypt the stream 110110100100000101100101 using the key
110101.

Exercise 13.3. Write down the first 30 digits of the key defined by

{[1; 1; 0; 0], [1; 0; 0; 1]}

Can you see what the key length is?

Exercise 13.4. Write down the first 30 digits of the key defined by

{[1; 0; 1; 1], [1; 0; 0; 1]}

Can you see what the key length is?

22

Exercise 13.5. Use brute force to find the recursion relation for the key frag-
ment 1011100101 and use it to find the period.

Exercise 13.6. Use brute force to find the recursion relation for the key frag-
ment 0011101001 and use it to find the period.

Exercise 13.7. Use brute force to find the recursion relation for the key frag-
ment 010001101000110 and use it to find the period.

Exercise 13.8. Use brute force to find the recursion relation for the key frag-
ment 010110010001111 and use it to find the period.

Exercise 13.9. Use refined brute force (look for a determinant of 1 followed
by at least three determinants of 0) to find the recursion relation for the key
fragment 01010010001011111011 and use it to find the next three bits of the
key.

Exercise 13.10. Use refined brute force (look for a determinant of 1 followed
by at least three determinants of 0) to find the recursion relation for the key
fragment 01111000010111010101 and use it to find the next three bits of the
key.

Exercise 13.11. Use refined brute force (look for a determinant of 1 followed
by at least three determinants of 0) to find the recursion relation for the key
fragment 101011110000010011101101101010 and use it to find the next three
bits of the key.

Exercise 13.12. Use refined brute force (look for a determinant of 1 followed
by at least three determinants of 0) to find the recursion relation for the key
fragment 010010111000100111001111000001 and use it to find the next three
bits of the key.

Exercise 13.13. Suppose you intercept the following ciphertext along with a
fragment of the plaintext:

Ciphertext: 11101001011001101101011001011011111111000000110001

Plaintext: 0011101111011110010101

(a) Obtain as large a key fragment as you can.

(b) Use refined brute force to find the recursion relation for the key.

23

(c) Continue building the key until you see it repeat. At this point you know
the full key.

(d) Use the key to decrypt the full ciphertext.

(e) If groups of five bits, converted to decimal, indicate letters with 1 = A,
2 = B, etc., what does the message say?

Exercise 13.14. Suppose you intercept the following ciphertext along with a
fragment of the plaintext:

Ciphertext: 0010001111010010111100011110111100011100110011011011011

Plaintext: 1001101101000011001010100

(a) Obtain as large a key fragment as you can.

(b) Use refined brute force to find the recursive relation for the key.

(c) Continue building the key until you see it repeat. At this point you know
the full key.

(d) Use the key to decrypt the full ciphertext.

(e) If groups of five bits, converted to decimal, indicate letters with 1 = A,
2 = B, etc., what does the message say?

Exercise 13.15. This method of producing a key can also be used to produce
pseudorandom numbers. These are numbers that appear random but are not
(generating random numbers and even defining what it means to be random is
a difficult thing).

Create the first ten digits of a pseudorandom string of numbers between 0 and
15 as follows:

(a) Consider the key defined by the vectors [1; 0; 1; 1; 1; 0; 0] and [1; 0; 1; 1; 0; 0; 0].
Write down 40 bits of this key.

(b) Break the key into 4-bit chunks and convert each chunk from binary to
decimal.

Exercise 13.16. Suppose you encounter the pseudorandom number sequence:

9,9,10,0,12,7,15,12,5

Assuming these came from 4-bit chunks of a key generated using recursion, find
the next three digits of the sequence.

Exercise 13.17. Suppose you encounter the pseudorandom number sequence:

24

12,11,4,8,12,11,13,1,15,13

Assuming these came from 4-bit chunks of a key generated using recursion, find
the next three digits of the sequence.

Exercise 13.18. Suppose when attempting to break a recursively defined key
(from a key fragment you have) you apply the Theorem and find for m = 1, 2,
... that:

det(Mm) = 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0

at which point you can no longer calculate determinants because you run out
of key fragment.

(a) What is your guess for the length of the recursive relation?

(b) Suppose you solve for the corresponding ci but they don’t actually work
when applied to the key fragment. What does this mean?
Hint: If this is confusing, think about what would happen if you’d only had
enough key fragment to generate determinants 0, 1, 0, 0, 1, 1, 0.

Exercise 13.19. Consider the following (repeating key):

11001011100101110010

(a) What is the key length?

(b) Find the recursion relation.
Note: The recursion relation is short and the systems of equations you need
to solve are easy by hand.

Exercise 13.20. Consider the key recursively defined using the vectors s̄ =
[1; 0; 1; 1] and c̄ = [1; 1; 0; 1]. This recursive relation has length 4 but show that
the key it generates can in fact be genereated using a recursive relation of length
2.

25

	Introduction
	Background
	Preliminary Notes
	Basic Encryption Technique
	How to Encrypt and Decrypt
	Practical Note

	Key Creation and Sharing
	Breaking the Key
	Circumstances
	Brute Force
	Refining Brute Force

	System of Equations Mod 2
	Matlab
	Exercises

