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16.1 Introduction

We solve systems of linear differential equations using matrix exponentials and
diagonalizability. Heat diffusion on a graph is considered as a motivating exam-
ple.

16.2 A Heat Diffusion Problem

We shall consider a discretized version of the classical continuous heat problem
on a metal rod. In the continuous version, we have a long thin metal rod whose
temperature is non-uniform. We consider the temperature u(x, t) of the rod
as a function of both the position x (a point on the rod) and of time t. One
also imposes boundary conditions on the endpoints, for example we’ll assume
that the endpoints of the rod are held fixed with u = 0. The function u(x, t) is
governed by the second-order partial differential equation

∂u

∂t
=
∂2u

∂x2
,

which is called the heat equation. (In reality, there may be some physical con-
stants mixed into the equation.)

We will not study this partial differential equation. Instead of considering a
continuous rod, we will imagine that it has been divided into n discrete pieces,
say of equal size, ordered from left to right. Our simplifying assumption is
that at any given time t, each piece will have a uniform temperature. The
temperatures of the pieces will be denoted u1(t), . . . , un(t). We will also keep
our boundary conditions, which say that the ends of the rods are held fixed at
u = 0. For us, this does not mean that u1(t) = 0 and un(t) = 0. Instead, we
imagine that temperature is 0 to the left of the first piece and to the right of
the n-th piece.

Let’s focus on the case where n = 2, depicted in the figure. The main principle

u = 0
u1(t) u2(t)

u = 0

is that the rate at which heat flows across a boundary (either the two ends of the
rod or the boundary between the two pieces) is proportional to the temperature
difference of the two regions at the boundary. For simplicity, we will assume
this rate is equal to the temperature difference (proportional with constant 1).
For example, heat leaves the left endpoint of the first region at a rate of u1(t),
and it leaves the right endpoint of the first region (and enters the second) at a
rate of u1(t) − u2(t) (if this is negative, heat is actually flowing into the first
region.) This leads to the differential equation

u′1(t) = −u1(t) − (u1(t) − u2(t)) = −2u1(t) + u2(t).
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Note that we had to include negative signs because we were discussing the rate
at which heat was leaving the first region.

Our assumption is that the temperature u = 0 is fixed at the ends. It may be
helpful to imagine this is a region outside of the rod, held fixed at u = 0. Heat
is flowing out of the rod and to the outside, but it is not raising the temperature
outside.

In a similar way, we can consider how heat enters/leaves the second region. It
flows out the right of the second region at a rate of u2(t) and it flows in from
the first region at a rate of u1(t)− u2(t), as we already remarked. So we obtain

u′2(t) = (u1(t) − u2(t)) − u2(t) = u1(t) − 2u2(t).

Altogether, we have obtained a system of differential equations{
u′1(t) = −2u1(t) + u2(t)
u′2(t) = u1(t) − 2u2(t)

The goal is to solve for the functions u1(t) and u2(t), that is, to give explicit
formulas for them. We store both functions in a vector-valued function

ū(t) =

[
u1(t)
u2(t)

]
.

The system of differential equations tells us about the derivative ū′(t). (Note
that to differentiate a vector-valued function, we just differentiate each entry).
We have

ū′(t) =

[
u′1(t)
u′2(t)

]
=

[
−2u1(t) + u2(t)
u1(t) − 2u2(t)

]
=

[
−2 1
1 −2

] [
u1(t)
u2(t)

]
=

[
−2 1
1 −2

]
ū(t).

As it stands, the problem is incomplete because we need to specify an initial
condition, which are values of the functions u1 and u2 when t = 0. For example,
suppose that u1(0) = 10 and u2(0) = 0. Then we have an initial condition

ū(0) =

[
u1(0)
u2(0)

]
=

[
10
0

]
.

When we solve this initial value problem (this means differential equation along
with initial condition), we will obtain explicit formulas for u1(t) and u2(t) which
describe how heat flows as a function of time. Intuitively, we expect heat to
flow out of the first region and into the second, but also out both end points.
Eventually, all heat should leave the rod.

Before learning techniques to solve this, let’s consider the same problem, but
with a rod divided into four regions (n = 4). Here, we keep track of four
functions u1(t), u2(t), u3(t), u4(t) for the temperatures of four regions. When
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u = 0
u1(t) u2(t) u3(t) u4(t)

u = 0

heat leaves this rod, it only does so from region 1 or region 4. The differential
equations are 

u′1(t) = −2u1(t) + u2(t)
u′2(t) = u1(t) − 2u2(t) + u3(t)
u′3(t) = u2(t) − 2u3(t) + u4(t)
u′4(t) = u3(t) − 2u4(t)

If we let ū(t) =


u1(t)
u2(t)
u3(t)
u4(t)

, then we obtain

ū′(t) =


−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

 ū(t).

16.3 Solving with Matrix Exponentials

Let A be an n × n matrix and let x̄(t) =

x1(t)
...

xn(t)

 be a vector-valued function

with n “unknown” functions. We’d like to solve the general initial value problem

x̄′(t) = Ax̄(t), x̄(0) = x̄0,

where x̄0 is some given vector in Rn (the “initial conditions”). We can take a
little inspiration from the n = 1 case, which we just simply have a differential
equation

x′(t) = ax(t), x(0) = x0,

where a is a constant. The function x(t) = eat clearly satisfies this differential
equation, but more generally so does every function of the form x(t) = Ceat,
where C is an arbitrary constant. The constant C is determined by the initial
condition, and in fact x(t) = x0e

at is the unique function that satisfies the
differential equation along with the initial condition.

Let’s return to the system of differential equations x̄′(t) = Ax̄(t). Could it be
possible that eAt is a solution? But wait, what does that even mean?

It turns out, there is something of value here, but we need to figure out what it
means. Recall that for any real number x, the exponential function is given by
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the Taylor series

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ . . .

More specifically, this series converges for every number x, and the value of the
sum is precisely ex. Following this, we’ll define a matrix exponential.

Definition 16.3.0.1. Let A be an n × n matrix. We define the matrix expo-
nential of A to be

eA =

∞∑
k=0

Ak

k!
= In +A+

1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

Note that we use the identity matrix In in place of 1 in the original Taylor series.
The matrix A was assumed to be square, so it is possible to compute powers
Ak of A. The formula appears to make sense, apart from the natural issue of
convergence.

Theorem 16.3.0.1. For any n× n matrix A, the series defining eA converges.
Hence eA is defined for any n× n matrix A.

Note that if A is an n× n matrix, then eA is some other n× n matrix.

Example 16.1. Let 0̄n×n denote the n×n matrix of all 0’s. Then by defintion,

e0̄n×n = In + 0̄n×n +
1

2
0̄2
n×n +

1

6
0̄3
n×n +

1

24
0̄4
n×n + . . . = In.

This shows that e0̄n×n = In, just like how e0 = 1.

We will be interested in considering etA, where t is a real variable. Note that
etA is a matrix-valued function of the real variable t. A matrix-valued function
can be differentiated much like a vector-valued function (just differentiate each
entry).

Theorem 16.3.0.2. Let A be an n× n matrix. Then

d

dt

[
etA
]

= AetA.
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Proof. We’ll give a “proof” which ignores important analytic details. We have

etA =

∞∑
k=0

(tA)k

k!
= In + tA+

t2

2
A2 +

t3

6
A3 +

t4

24
A4 + . . .

To take the derivative, we differentiate this series, term-by-term1, with respect
to t to obtain

d

dt

[
etA
]

= 0̄n×n +A+ tA2 +
t2

2
A3 +

t3

6
A4 + . . .

= A

(
In + tA+

t2

2
A2 +

t3

6
A3 + . . .

)
= AetA

Now we are in a position to show how matrix exponentials can solve systems of
differential equations.

Theorem 16.3.0.3. Let A be an n×n matrix. The solution to the initial value
problem

x̄′(t) = Ax̄(t), x̄(0) = x̄0

is x̄(t) = etAx̄0.

Proof. We’ll just verify that x̄(t) = etAx̄0 is a solution. First observe that it
satisfies the initial condition:

x̄(0) = e0Ax̄0 = e0̄n×n x̄0 = Inx̄0 = x̄0.

Next, observe that it satisfies the differential equation:

x̄′(t) =
d

dt

[
etAx̄0

]
= AetAx̄0 = Ax̄(t).

So it appears that we’ve figured out how to solve x̄′(t) = Ax̄(t). The problem
is, how do we actually compute a matrix exponential?

16.4 Diagonalization to the Rescue!

The first observation is that we can, in fact, compute eD for a diagonal matrix
D.

1This is the part in which we are being sloppy. It turns out that this is OK to do, but we
are not providing rigorous justification.
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Theorem 16.4.0.1. IfD =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

, then eD =


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλn

.

Proof. For ease of notation, let’s prove it in the 2 × 2 case (nothing different

happens in the n × n case.) Suppose D =

[
λ1 0
0 λ2

]
. We know that Dk =[

λk1 0
0 λk2

]
. So

eD = I2 +D +
1

2
D2 +

1

6
D3 +

1

24
D4 + . . .

=

[
1 0
0 1

]
+

[
λ1 0
0 λ2

]
+

1

2

[
λ2

1 0
0 λ2

2

]
+

1

6

[
λ3

1 0
0 λ3

2

]
+

1

24

[
λ4

1 0
0 λ4

2

]
+ . . .

=

[(
1 + λ1 + 1

2λ
2
1 + 1

6λ
3
1 + 1

24λ
4
1 + . . .

)
0

0
(
1 + λ2 + 1

2λ
2
2 + 1

6λ
3
2 + 1

24λ
4
2 + . . .

)]
=

[
eλ1 0
0 eλ2

]
.

Next, we consider the case where A = PDP−1.

Theorem 16.4.0.2. Suppose that A = PDP−1. Then eA = PeDP−1.

Proof. We use the fact that Ak = PDkP−1 and compute

eA = In +A+
1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

= PP−1 + PDP−1 +
1

2
PD2P−1 +

1

6
PD3P−1 +

1

24
PD4P−1 + . . .

= P

(
In +D +

1

2
D2 +

1

6
D3 +

1

24
D4 + . . .

)
P−1

= PeDP−1.

Now we simply combine the previous two results:

Theorem 16.4.0.3. Suppose thatA = PDP−1, whereD =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

.
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Then

eA = PeDP−1 = P


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλn

P−1,

and more generally

etA = PetDP−1 = P


eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

P−1.

Now we can solve our initial diffusion problem

ū′(t) =

[
−2 1
1 2

]
ū(t), ū(0) =

[
10
0

]
.

The solution is given by ū(t) = etA
[
10
0

]
, where A =

[
−2 1
1 −2

]
. The eigenval-

ues/eigenvectors of A are

λ1 = −1, v̄1 =

[
1
1

]
,

λ2 = −3, v̄2 =

[
1
−1

]
.

So we can diagonalize A as

A = PDP−1 =

[
1 1
1 −1

] [
−1 0
0 −3

] [
1/2 1/2
1/2 −1/2

]
.

Consequently, we can compute

etA = PetDP−1 =

[
1 1
1 −1

] [
e−t 0
0 e−3t

] [
1/2 1/2
1/2 −1/2

]
=

[
e−t e−3t

e−t −e−3t

] [
1/2 1/2
1/2 −1/2

]
=

[
(1/2)e−t + (1/2)e−3t (1/2)e−t − (1/2)e−3t

(1/2)e−t − (1/2)e−3t (1/2)e−t + (1/2)e−3t

]
.

Now we can use the initial condition to solve for ū(t):

ū(t) = etAū0 =

[
(1/2)e−t + (1/2)e−3t (1/2)e−t − (1/2)e−3t

(1/2)e−t − (1/2)e−3t (1/2)e−t + (1/2)e−3t

] [
10
0

]
=

[
5e−t + 5e−3t

5e−t − 5e−3t

]
.
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In terms of u1(t), u2(t), this says{
u1(t) = 5e−t + 5e−3t

u2(t) = 5e−t − 5e−3t.

We can now describe the temperature on the two regions of the rod as time goes
on. For example,

ū(0) =

[
10
0

]
, ū(0.25) ≈

[
6.26
1.53

]
ū(0.5) ≈

[
4.15
1.92

]
ū(0.75) ≈

[
2.89
1.83

]
ū(1) ≈

[
2.09
1.59

]
.

As expected, the temperature on the first region just drops. On the second
region, it goes up and then starts to drop. Some of the heat from the first
region entered the second, but then the heat is exiting out of the sides. We see
that both u1(t) and u2(t) will go to 0 as t goes to infinity, because they are both
sums of decaying exponentials. Intuitively, this makes sense.
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