
Discrete Dynamical Systems

Allan Yashinski

July 21, 2021

17.1 Introduction . 2
17.2 A Predator-Prey System . 2
17.3 Diagonalization to the Rescue! 4
17.4 Recurrence Relations . 7

1

17.1 Introduction

We solve linear discrete dynamical systems using diagonalization. Specific ex-
amples include predator-prey systems and recurrence relations such as the Fi-
bonacci sequence.

17.2 A Predator-Prey System

Suppose there is a population of owls (the predators) living among a population
of rats (the prey). A significant portion of the owls’ diet consists of the rats.
At time goes on, we keep track of the number of owls as well as the number of
rats. Let Øk denote the number of owls after k months, and let Rk denote the
number of rats (in thousands) after k months. Our main assumption is that the
sizes of these populations evolve according to the following equations:{

Øk+1 = (0.4)Øk + (0.5)Rk

Rk+1 = −(0.2)Øk + (1.2)Rk

If we know the populations in a given month, we can predict what the popula-
tions will be in the following month. To understand these equations, it helps to
consider the extreme cases. For example, consider the owl equation and suppose
that there are no rats. Then the equation says Øk+1 = (0.4)Øk, which tells us
that all but 40% of the owls died as the month passed. This stands to reason,
because they have no food. On the other hand, if Rk is very large, then the owl
population Øk+1 will grow to be larger than Øk.

For the rats, consider what happens if there are no owls. We would have Rk+1 =
(1.2)Rk, which indicates that the rat population grows (in fact exponentially,
which means at a rate proportional to its own size). But owls exist, and their
hunting of rats certainly will take away from the population of rats, as indicated
in the equation. If there are too many owls, perhaps they would take eat rats
too rapidly, to the point that the rat population was unsustainable. And if the
rats disappear, we know what happens to the owls...

So it is intereting to consider what will happen to the populations as time goes
on. We’d like to keep track of the two quantities Øk and Rk, so we’ll do so in

the vector x̄k =

[
Øk

Rk

]
. The given system of equations implies

x̄k+1 =

[
Øk+1

Rk+1

]
=

[
(0.4)Øk + (0.5)Rk
−(0.2)Øk + (1.2)Rk

]
=

[
0.4 0.5
−0.2 1.2

] [
Øk

Rk

]
= Ax̄k

where A =

[
0.4 0.5
−0.2 1.2

]
. The equation x̄k+1 = Ax̄k that we have obtained is

called a linear discrete dynamical system. It is discrete because we are keeping
track of time in integer increments (as opposed to having time be a continuous
variable).

2

To give us something to solve for, we need an initial condition, values of our
population at time k = 0. Suppose that there are initially 500 owls and 250
(thousand) rats. In our notation,

x̄0 =

[
Ø0

R0

]
=

[
500
250

]
.

To summarize so far, we have

x̄k+1 =

[
0.4 0.5
−0.2 1.2

]
x̄k, x̄0 =

[
500
250

]
,

and our goal is to understand the behavior of x̄k as k increases. The ideal
solution for us would be to be able to give an explicit formula for x̄k.

Let’s start experimenting to see how many owls and rats there are as time goes
on. We’ll compute x̄1, x̄2, x̄3, etc. Each vector is obtained from the previous
one by multiplying by the given 2× 2 matrix, which we call A.

x̄1 = Ax̄0 =

[
0.4 0.5
−0.2 1.2

] [
500
250

]
=

[
325
200

]
x̄2 = Ax̄1 =

[
0.4 0.5
−0.2 1.2

] [
325
200

]
=

[
230
175

]
x̄3 = Ax̄2 =

[
0.4 0.5
−0.2 1.2

] [
230
175

]
=

[
179.5
164

]
x̄4 = Ax̄3 =

[
0.4 0.5
−0.2 1.2

] [
179.5
164

]
=

[
153.8
160.9

]
...

This looks grim. Both populations appear to be descreasing. Will they both go
to zero? Will they stabilize at certain values? Will they bounce back and grow
to infinity? We can’t be sure until we investigate further.

Notice that each time we compute then next x̄k+1, we are multiplying the pre-
vious x̄k by A (in fact, that’s just a restatement of what the dynamical system
is.) But this means that

x̄1 = Ax̄0

x̄2 = Ax̄1 = A2x̄0

x̄3 = Ax̄2 = A3x̄0

...

and in general we have x̄k = Akx̄0.

3

Theorem 17.2.0.1. The solution of the linear discrete dynamical system x̄k+1 =
Ax̄k is x̄k = Akx̄0.

This is great, but if we want to give a formula for x̄k, we are going to need a
formula for the k-th power Ak.

17.3 Diagonalization to the Rescue!

Matrix multiplication is a sufficiently strange operation that it is not so clear
what Ak will look like on the surface. However, it is pretty clear in the case
where the matrix is diagonal.

Example 17.1. Let D =

[
2 0
0 3

]
. Let’s compute powers of D:

D2 = DD =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]
D3 = DD2 =

[
2 0
0 3

] [
22 0
0 32

]
=

[
23 0
0 33

]
D4 = DD3 =

[
2 0
0 3

] [
23 0
0 33

]
=

[
24 0
0 34

]
...

It becomes apparent that Dk =

[
2k 0
0 3k

]
for any positive integer k.

Theorem 17.3.0.1. Let D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 be an n×n diagonal matrix.

Then for any positive integer k, we have Dk =


λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn


The philosophy behind diagonalization is that a diagonalizable matrix is not so
different from a diagonal matrix. This is somewhat striking because diagonal
matrices are very special, whereas most (is a sense that can be made precise)
matrices are diagonalizable. Once we figure out how to do something for a

4

diagonal matrix, we can hope to use that to do the same thing to a diagonalizable
matrix. We’ll carry this out for powers of a matrix.

Suppose now that A = PDP−1. We’ll compute powers of A, constantly using
the fact that P−1P = I.

A2 = AA = (PDP−1)(PDP−1) = PDIDP−1 = PD2P−1

A3 = AA2 = (PDP−1)(PD2P−1) = PDID2P−1 = PD3P−1

A4 = AA3 = (PDP−1)(PD3P−1) = PDID3P−1 = PD4P−1

...

It becomes clear that Ak = PDkP−1.

Theorem 17.3.0.2. Suppose that A = PDP−1. Then Ak = PDkP−1 for any
positive integer k.

Example 17.2. Consider the matrix A =

[
1 1
−2 4

]
, which can be diagonalized

as

A =

[
1 1
−2 4

]
=

[
1 1/2
1 1

] [
2 0
0 3

] [
2 −1
−2 2

]
= PDP−1.

We can compute Ak = PDkP−1 now, since we know how to compute Dk. We
have

Ak = PDkP−1

=

[
1 1/2
1 1

] [
2k 0
0 3k

] [
2 −1
−2 2

]
=

[
2k (1/2)3k

2k 3k

] [
2 −1
−2 2

]
=

[
2k+1 − 3k −2k + 3k

2k+1 − 2 · 3k −2k + 2 · 3k
]
.

This is our formula for Ak. For example, when k = 4 we have

A4 =

[
25 − 34 −24 + 34

25 − 2 · 34 −24 + 2 · 34
]

=

[
32− 81 −16 + 81

32− 2 · 81 −16 + 2 · 81

]
=

[
−49 65
−130 146

]
,

which can be confirmed by direct matrix multiplication. Notice that the entries
of Ak are growing exponentially, in this case there are exponential terms with
base 2 and 3. The numbers 2 and 3 are special because they are the eigenvalues
of A. The eigenvalues dictate the rate of exponential growth (or decay) of the
powers Ak.

5

Now we can return to our predator-prey system

x̄k+1 =

[
0.4 0.5
−0.2 1.2

]
x̄k, x̄0 =

[
500
250

]
.

We know that the solution has the form

x̄k = Akx̄0.

We need to diagonalize A to compute Ak. Using MATLAB, we see that the
eigenvalues for A are (approximately) λ1 = 1.045 and λ2 = 0.555 with eigen-
vectors

v̄1 =

[
0.613
0.790

]
and v̄2 =

[
0.955
0.296

]
.

So A can be diagonalized as

A = PDP−1 =

[
0.613 0.955
0.790 0.296

] [
1.045 0

0 0.555

] [
−0.517 1.666
1.378 −1.069

]
.

Now if we compute Ak, we get

Ak = PDkP−1 =

[
0.613 0.955
0.790 0.296

] [
(1.045)k 0

0 (0.555)k

] [
−0.517 1.666
1.378 −1.069

]
,

which simplifies to

Ak =

[
−0.316(1.045)k + 1.316(0.555)k 1.021(1.045)k − 1.021(0.555)k

−0.408(1.045)k + 0.408(0.555)k 1.316(1.045)k − 0.316(0.555)k

]
.

Finally, we use this to compute

x̄k = Akx̄0 = Ak
[
500
250

]
=

[
96.91(1.045)k + 403.1(0.555)k

125.0(1.045)k + 125.0(0.555)k

]
.

Quite explicitly, we now have the solution{
Øk = 96.91(1.045)k + 403.1(0.555)k

Rk = 125.0(1.045)k + 125.0(0.555)k.

There is some positive news in here! Despite the initial dip in population, it
looks like our animal friends will thrive after all. To see it a little better, it helps
to observe that (0.555)k ≈ 0 for large k. So for large k, we have{

Øk ≈ 96.91(1.045)k

Rk ≈ 125.0(1.045)k.

In the long run, both populations will ultimately grow exponentially. The eigen-
value 0.555 did not play much of a role, but the fact that the other eigenvalue

6

1.045 was greater than 1 was crucial. After a long time, the proportion of rats
to owls tends to

Rk
Øk
≈ 125.0

96.91
≈ 1.290

Suppose we slightly alter the original dynamical system to become

x̄k+1 =

[
0.4 0.5
−0.25 1.2

]
x̄k.

Only one entry changed, but the interpretation is that the owls need to eat more
rats to survive (maybe its a different species of owl). We still have x̄k = Akx̄0.
When we go to diagonalize A, we see that its eigenvalues are now λ1 = 0.987
and λ2 = 0.613. Each has an eigenvector (they changed as well), but won’t give
them right now. The matrix A is diagonalizable, and when we compute Ak,
we’ll get

Ak = PDkP−1 = P

[
(0.987)k 0

0 (0.613)k

]
P−1.

Since the eigenvalues are both between 0 and 1, we see that

lim
k→∞

Ak = P

[
limk→∞(0.987)k 0

0 limk→∞(0.613)k

]
P−1

= P

[
0 0
0 0

]
P−1 =

[
0 0
0 0

]
.

So for any initial condition x̄0, we see

lim
k→∞

x̄k = lim
k→∞

Akx̄0 =

[
0 0
0 0

]
x̄0 =

[
0
0

]
.

Both species die out regardless of the initial population sizes. It seems that
these owls and rats are incompatible.

17.4 Recurrence Relations

Next we’ll consider recurrence relations, and we’ll show how they give rise to
discrete dynamical systems. The classic example is the sequence of Fibonacci
numbers. We first define the 0-th and 1-st Fibonacci numbers to be F0 = 0 and
F1 = 1. For n ≥ 2, the n-th Fibonacci number is defined recursively as

Fn = Fn−1 + Fn−2.

7

That is, the next number in the Fibonacci sequence is the sum of the previous
two Fibonacci numbers. So we can compute

F0 = 0

F1 = 1

F2 = F1 + F0 = 1 + 0 = 1

F3 = F2 + F1 = 1 + 1 = 2

F4 = F3 + F2 = 2 + 1 = 3

F5 = F4 + F3 = 3 + 2 = 5

F6 = F5 + F4 = 5 + 3 = 8

F7 = F6 + F5 = 8 + 5 = 13

F8 = F7 + F6 = 13 + 8 = 21

...

We can keep computing Fibonacci numbers until we get bored:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

It seems that the sequence eventually starts growing very rapidly. But how
rapidly? Does it grow linearly? quadraticly? exponentially?

Here is another question: what is F100? It seems that the only way to compute
it would be to compute every single Fibonacci number before F100, and then
obtain F100 as the sum F99 + F98. Maybe that’s doable, but what if we want
F1000 or F10000? We will answer all of these questions by finding a closed formula
for Fk in terms of k alone.

If we know one Fibonacci number Fk, we do not have sufficient information
to determine the next Fibonacci number Fk+1. However, we will have enough
information if we know a pair of consecutive Fibonacci numbers. In fact, if we
know a pair (Fk, Fk+1) of consecutive Fibonacci numbers, we can determine the
next pair (Fk+1, Fk+2), since Fk+2 is the sum of the pair that we know.

This observation motivates us to consider pairs of consecutive Fibonacci num-
bers, which we keep track of in a vector. Let

x̄k =

[
Fk
Fk+1

]
.

Then the vector x̄k+1 can be obtained from x̄k:

x̄k+1 =

[
Fk+1

Fk+2

]
=

[
Fk+1

Fk + Fk+1

]
=

[
0 1
1 1

] [
Fk
Fk+1

]
=

[
0 1
1 1

]
x̄k.

We’ve obtained a discrete dynamical system, and the matrix A =

[
0 1
1 1

]
is

playing a major role. More specifically, we have

x̄k+1 =

[
0 1
1 1

]
x̄k, x̄0 =

[
0
1

]
.

8

Note that the initial vector x̄0 just contains the first two Fibonacci numbers. If
we can find a formula for x̄k, then we will have a formula for Fk. We know how
to do this now:

x̄k = Akx̄0.

We must diagonalize the matrix A so that we can simplify Ak. Its eigenvalues
are found by solving

det(A− λI) = 0

det

[
−λ 1
1 1− λ

]
= 0

λ2 − λ− 1 = 0

λ =
1±
√

5

2
,

where the solutions were obtained by using the quadratic formula. We have two
eigenvalues, which we will denote as

ϕ =
1 +
√

5

2
and ψ =

1−
√

5

2
.

Corresponding eigenvectors can be found as

v̄ϕ =

[
1
ϕ

]
and v̄ψ =

[
1
ψ

]
.

So we can diagonalize A = PDP−1 where

P =

[
1 1
ϕ ψ

]
and D =

[
ϕ 0
0 ψ

]
.

We’ll need P−1 also. Note that detP = ψ − ϕ = −
√

5. So

P−1 =
1

detP

[
ψ −1
−ϕ 1

]
=

1√
5

[
−ψ 1
ϕ −1

]
.

Our diagonalization is

A = PDP−1 =

[
1 1
ϕ ψ

] [
ϕ 0
0 ψ

]
1√
5

[
−ψ 1
ϕ −1

]
.

We need Ak, which is

Ak = PDkP−1

=

[
1 1
ϕ ψ

] [
ϕk 0
0 ψk

]
1√
5

[
−ψ 1
ϕ −1

]
=

[
ϕk ψk

ϕk+1 ψk+1

]
1√
5

[
−ψ 1
ϕ −1

]
=

1√
5

[
−ψϕk + ϕψk ϕk − ψk

−ψϕk+1 + ϕψk+1 ϕk+1 − ψk+1

]
.

9

Finally, we have[
Fk
Fk+1

]
= Akx̄0 =

1√
5

[
−ψϕk + ϕψk ϕk − ψk

−ψϕk+1 + ϕψk+1 ϕk+1 − ψk+1

] [
0
1

]
=

1√
5

[
ϕk − ψk

ϕk+1 − ψk+1

]
.

The top entry of this vector gives our desired formula

Fk =
1√
5

(ϕk − ψk) =
1√
5

(1 +
√

5

2

)k
+

(
1−
√

5

2

)k .

It seems remarkable already that this expression is always an integer. To un-
derstand it a little better, observe that

ϕ =
1 +
√

5

2
≈ 1.618

ψ =
1−
√

5

2
≈ −0.618.

In particular, we see that ψk ≈ 0 for large k. This means that the k-th Fibonacci
number is approximately

Fk ≈
ϕk√

5
.

This can be used to compute Fibonacci numbers. For example,

F21 ≈
ϕ21

√
5
≈ 10945.99998.

To get the Fibonacci number, we just round to the nearest integer: F21 = 10946.

Our formula for Fk also indicates that the Fibonacci sequence grows exponen-
tially, with base ϕ ≈ 1.618. This number ϕ is called the golden ratio. The
golden ratio is, approximately, the ratio of consecutive Fibonacci numbers:

Fk+1

Fk
≈

1√
5
ϕk+1

1√
5
ϕk

= ϕ.

More precisely, ϕ is the asymptotic ratio of consecutive Fibonacci numbers,
meaning

lim
k→∞

Fk+1

Fk
= ϕ.

10

	Introduction
	A Predator-Prey System
	Diagonalization to the Rescue!
	Recurrence Relations

