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18.1 Introduction

We study how rotations arise from matrix exponentials.

18.2 An example

Suppose we wish to solve the differential equation

x̄′(t) =

[
0 −1
1 0

]
x̄(t), x̄(0) =

[
2
−5

]
.

We know the solution is given by x̄(t) = etAx̄0, where A is the given 2×2 matrix
above. To compute the matrix exponential, we begin to diagonalize A. We first
find the eigenvalues:

det(A− λI) = 0

det

[
−λ −1
1 λ

]
= 0

λ2 + 1 = 0

λ2 = −1

λ = ±
√
−1 = ±i.

The eigenvalues of A are not real numbers, but we can continue as we would
if they were. To diagonalize, we need to find eigenvectors. For λ = i, we solve
(A− iI)v̄ = 0̄, which has augmented matrix[

−i −1 0
1 −i 0

]
∼
[
1 −i 0
0 0 0

]
.

The first equation says that v1 = iv2. Since v2 is free, we can take v2 = 1, which

gives the eigenvector v̄ =

[
i
1

]
. We can verify it is an eigenvector since

Av̄ =

[
0 −1
1 0

] [
i
1

]
=

[
−1
i

]
and iv̄ = i

[
i
1

]
=

[
−1
i

]
.

In a similar way, one can find the eigenvector

[
−i
1

]
for the eigenvalue λ = −i.

So we can write1 A = PDP−1 where

P =

[
i −i
1 1

]
and D =

[
i 0
0 −i

]
.

Using the usual 2× 2 inversion formula, we get

P−1 =
1

2i

[
1 i
−1 i

]
=

[
(1/2)i−1 1/2
−(1/2)i−1 1/2

]
=

[
−i/2 1/2
i/2 1/2

]
1Diagonalization works the same way with complex eigenvalues/eigenvectors.
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because i−1 = −i. So we have

A =

[
0 −1
1 0

]
=

[
i −i
1 1

] [
i 0
0 −i

] [
−i/2 1/2
i/2 1/2

]
.

At this point, we may be somewhat concerned because the original differential
equation involved only real numbers, and we now have complex numbers all
over the place. Nonetheless, we persevere.

Using etA = PetDP−1, we have

etA =

[
i −i
1 1

] [
eit 0
0 e−it

] [
−i/2 1/2
i/2 1/2

]
.

At this point, we recall Euler’s formula:

Theorem 18.2.0.1 (Euler’s formula). For any real number x, we have

eix = cosx+ i sinx.

This directly tells us what the first complex exponential is. For the second, we
have

e−it = ei(−t) = cos(−t) + i sin(−t) = cos t− i sin t,

where the last equality follows from trig identities. So we can simplify the
complex exponentials and compute

etA =

[
i −i
1 1

] [
cos t+ i sin t 0

0 cos t− i sin t

] [
−i/2 1/2
i/2 1/2

]
=

[
i cos t− sin t −i cos t− sin t
cos t+ i sin t cos t− i sin t

] [
−i/2 1/2
i/2 1/2

]
=

[
cos t − sin t
sin t cos t

]
.

Amazing! Not only have all the imaginary parts cancelled, the result is pleas-
antly simple (it is a rotation matrix.) We can finish solving the differential
equation:

x̄(t) = etAx̄0 =

[
cos t − sin t
sin t cos t

] [
2
−5

]
=

[
2 cos t+ 5 sin t
2 sin t− 5 cos t

]
.

It was pretty cool that all the imaginary parts cancelled, but we sort of knew
this had to happen in advance. The matrix etA is defined to be the sum of the
series

etA =

∞∑
k=0

tk

k!
Ak.
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Since A is real, every term of the series is real, and therefore the sum has to be
real.

Looking at the original system from a different perspective, it is not surprising
that sin t and cos t appeared. The system is{

x′1(t) = − x2(t)
x′2(t) = x1(t).

If we take the derivative of the first equation and substitute in the second, we
obtain

x′′1(t) = −x′2(t) = −x1(t),

and similarly x′′2(t) = −x2(t). The functions sin t and cos t are two functions
whose second derivative is equal to its negative. Any function that has this
property must actually be a linear combination of sin t and cos t, just like we
saw in the solution above.

18.3 More properties of matrix exponentials

We’d like to understand better why the matrices etA were rotation matrices in
the previous example. Our goal will be to understand which properties of A
imply that etA are rotation matrices.

Recall that an orthogonal matrix is an n×n matrix Q such that QTQ = In. In
other words, QT = Q−1. Equivalently, Q is orthogonal if and only if its columns
are an orthonormal basis for Rn. It follows from the definition of orthogonal
matrix that detQ = ±1. An orthogonal matrix with determinant 1 is a rotation,
and an orthogonal matrix with determinant −1 is a reflection.

So we’d like to know under what circumstances etA is an orthogonal matrix with
determinant 1. We’ll investigate more properties of matrix exponentials.

Suppose A and B are n× n matrices. What happens when we multiply eAeB?
For numbers, a and b, we know that eaeb = ea+b. Unfortunately, this property
does not carry over to matrices.

Exercise 18.1. Give an example of two 2× 2 matrices A,B for which eAeB 6=
eA+B .

The reason why the result fails for matrices is because matrix multiplication
is noncommutative. So there is a partial result in the case where A and B
commute.

Theorem 18.3.0.1. If AB = BA, then eAeB = eA+B .
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It might seem rare to have commuting matrices, but it can be applied in situ-
ations where the second matrix has a strong relationship to the first, as in the
following results.

Corollary 18.3.0.1. Let A be an n× n matrix.

1. For any real numbers t and s, we have etAesA = e(t+s)A.

2. The matrix eA is invertible, and (eA)−1 = e−A.

For the first, note that tA and sA commute. For the second, note that A and
−A commute. Consequently,

eAe−A = eA+(−A) = e0̄n×n = In.

Since we are interested in orthogonal matrices, we will need to take the transpose
of a matrix exponential. This is easy enough.

Theorem 18.3.0.2. For any n× n matrix A, (eA)T = e(AT ).

This follows because the transpose operation is linear and it commutes with
powers of a matrix, meaning (Ak)T = (AT )k. This justifies the following:

(eA)T =

( ∞∑
k=0

1

k!
Ak

)T
=

∞∑
k=0

1

k!
(Ak)T =

∞∑
k=0

1

k!
(AT )k = e(AT ).

The last thing we will need is some information about the eigenvalues and
eigenvectors of eA.

Theorem 18.3.0.3. Let A be an n× n matrix. Then

1. If λ is an eigenvalue for A, then eλ is an eigenvalue for eA.

2. More precisely, if v̄ is an eigenvector for A with eigenvalue λ, then v̄ is an
eigenvector for eA with eigenvalue eλ.

So A and eA have the same eigenvectors, but the eigenvalue for eA is the expo-
nential of the eigenvalue for A. This follows from the definition of eA. Suppose
Av̄ = λv̄. Then

eAv̄ =

∞∑
k=0

1

k!
Akv̄ =

∞∑
k=0

1

k!
λkv̄ =

( ∞∑
k=0

λk

k!

)
v̄ = eλv̄.
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18.4 Rotations as matrix exponentials

Now we determine conditions on A that will make eA an orthogonal matrix.

Orthogonal means (eA)T = (eA)−1. Note that the former equals e(AT ) and the
latter equals e−A. So this would work if A satisfied the condition AT = −A.

Definition 18.4.0.1. An n× n matrix is called skew-symmetric if AT = −A.

Theorem 18.4.0.1. If A is a skew-symmetric n×n matrix, then eA is orthog-
onal. Additionally, det(eA) = 1, so eA is a rotation matrix.

So what does a skew-symmetric matrix look like? For a 2×2 matrix A =

[
a b
c d

]
,

we see A is skew-symmetric if and only if

AT = −A[
a c
b d

]
=

[
−a −b
−c −d

]
.

This gives the system 
a = −a
b = −c
d = −d

The first equation implies a = 0, and similarly d = 0 from the last equation.

Hence a 2× 2 skew-symmetric matrix has the form

[
0 −b
b 0

]
. This is precisely

the family of matrices we took the exponential of when we computed

exp

([
0 −t
t 0

])
=

[
cos t − sin t
sin t cos t

]
.

Note that if A is a skew-symmetric matrix, then any scalar multiple tA is also
skew-symmetric. The result below follows.

Theorem 18.4.0.2. If A is a skew-symmetric n × n matrix, then etA is a
rotation matrix for each real number t.

Let’s try to better understand what happens in the case where A is a 3 × 3
skew-symmetric matrix. Such a matrix necessarily has the form

A =

0 −a −b
a 0 −c
b c 0

 .
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For reasons that will become clearer later, it will be convenient to consider a
skew-symmetric matrix in the form

A =

 0 −z y
z 0 −x
−y x 0

 .
We know that eA, and more generally etA, are rotations in R3. What kind of
rotations are they? More specifically, what is the axis of rotation, and what is
the angle of rotation?

Let’s compute the eigenvalues of this matrix:

det(A− λI) = 0

det

−λ −z y
z −λ −x
−y x −λ

 = 0

−λ(λ2 + x2) + z(−λz − xy) + y(xz − λy) = 0

−λ3 − λx2 − λz2 − λy2 = 0

−λ3 − λ||v̄||2 = 0

−λ(λ2 + ||v̄||2) = 0,

where v̄ =

xy
z

 . It follows that the eigenvalues are λ = 0 and λ = ±i||v̄||. Let’s

focus on the λ = 0 eigenvalue now. As it turns out, v̄ is an eigenvector for
λ = 0. We can confirm this:

Av̄ =

 0 −z y
z 0 −x
−y x 0

xy
z

 =

0
0
0

 = 0v̄.

The importance of this is that we know that the same vector v̄ is an eigenvector
for eA with eigenvalue e0 = 1. That is, eAv̄ = v̄. A vector that is fixed by a
rotation in R3 must point along the axis of rotation! Note that we will also have
etAv̄ = v̄ for any t. It turns out that the norm of v̄ is determining the angle of
rotation. The following theorem describes the whole story.

Theorem 18.4.0.3. Let ū =

xy
z

 be a unit vector and letA =

 0 −z y
z 0 −x
−y x 0

.

Then rotation about the line through the origin in the direction of ū by θ radians
is given by the matrix eθA.

Note that if we consider any of the unit vectors u =

1
0
0

 ,
0

1
0

 ,
0

0
1

, we can
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recover the formulas for rotations about the x-, y-, or z-axes. For example,
rotation about the x-axis by θ radians is given by

exp

θ
0 0 0

0 0 −1
0 1 0

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
This could be worked out by hand in a manner similar to the first example given
in this document.

We can give any rotation matrix in the case where the axis goes through the
origin. For example, suppose we want to rotate about the axis determined by

the vector v̄ =

 3
2
−6

 by 27 degrees. The angle is θ =
2π

360
(27) =

3π

20
radians.

We need the unit vector

ū =
1

||v̄||
v̄ =

1√
9 + 4 + 36

 3
2
−6

 =

 3/7
2/7
−6/7

 .
We can then use the expm command in MATLAB to compute our rotation
matrix

exp

3π

20

 0 6/7 2/7
−6/7 0 −3/7
−2/7 3/7 0

 ≈
 0.9110 0.4025 0.0897
−0.3758 0.8999 −0.2213
−0.1697 0.1679 0.9711

 .
More generally, we can do rotations about any line in R3 (not necessarily through
the origin), if we use homogeneous coordinates. Say we want to rotate by 27
degrees about the line which goes through the point (8,−4, 5) and points in the

direction of v̄ =

 3
2
−6

. We use the translation matrix

T (8,−4, 5) =


1 0 0 8
0 1 0 −4
0 0 1 5
0 0 0 1


and its inverse, and compute

1 0 0 8
0 1 0 −4
0 0 1 5
0 0 0 1




0.9110 0.4025 0.0897 0
−0.3758 0.8999 −0.2213 0
−0.1697 0.1679 0.9711 0

0 0 0 1




1 0 0 −8
0 1 0 4
0 0 1 −5
0 0 0 1



=


0.9110 0.4025 0.0897 1.8734
−0.3758 0.8999 −0.2213 3.7122
−0.1697 0.1679 0.9711 2.1741

0 0 0 1

 .
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For example, if we want to apply this rotation to the point (10,−11,−2), we
compute

0.9110 0.4025 0.0897 1.8734
−0.3758 0.8999 −0.2213 3.7122
−0.1697 0.1679 0.9711 2.1741

0 0 0 1




10
−11
−2
1

 =


6.3770
−9.5021
−3.3122

1

 .
The rotated point is (6.3770,−9.5021,−3.3122).
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