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7.1 Introduction

One of the principal requirements that Google has to deal with is ranking web
pages. A web page should be ranked higher by some sort of criteria. So how
can we go about doing this? Given a web page, the basic idea might be to look
at how many pages are linking to this page; The more the better. However then
we have to appreciate how important those pages are, since being linked to by
a useless page is not as important as being linked to by an important one, and
so the problem goes back and back.

Note the term “Pagerank” comes from the name of Larry Page, one of the
founders of Google, not because it’s related to web pages.

7.2 Relationship to Markov Chains

Let’s examine a very basic internet, see how it connects to Markov Chains, and
how the Google Pagerank method works.

Example 7.1. Suppose the internet consists of only four pages, P1, P2, P3, P4,
linked as follows, where, for example, an arrow from P1 to P3 indicates a link
from P1 to P3.

P1 P2

P3 P4

Notice that this looks very much like the diagram of a Markov Chain. If that’s
the case why don’t we just assign probability values to the directions like we did
with population diagrams? For example if a web page has two outbound links
we could assign each a probability value of 0.5 and so on? If we did this then
the steady-state vector would correspond to where a web surfer would end up
in the long term, and this seems like a reasonable way to assign value to web
pages.

One obvious problem is that a web page may have no outbound links. If that’s
the case we wouldn’t know what to assign for the probabilities.
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Another obvious problem is that this method doesn’t really act like a web surfer.
Web surfers don’t just follow links, they also jump to other pages independently
of where they were.

The Google Pagerank (GP) algorithm takes the following approach:

(1) We assume that a Random Websurfer (RW) starts at some page.

(2) If the page has outbound links then there is an 85% chance that WR chooses
one of those links and those links are equally likely. There is a 15% chance
that RW chooses a page at random from all possible pages.

(3) If the page has no outbound links then there is a 100% chance that RW
chooses a page at random from all possible pages.

(4) RW will continue to do this forever.

After reading this it becomes fairly clear that this is exactly a Markov Chain.
The picture above is not an exact representation of the movement of RW because
we need to take into account the 15% chance that RW randomly chooses a page.
We could connect every page to every other page in the diagram but that would
be a bit silly so instead we just recognize that the connections are there.

Example 7.1 Revisited.

• There is a weight of 0.15/4 connecting Pi to Pj for all i, j.

• There is an additional weight of 0.85(1/n) connecting Pi to Pj provided
that Pi links to Pj and that Pi links to n pages total.

This is particularly easy to see in terms of two separate matrices:

T =
0.15

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 + 0.85


0 0 0 0

1/2 0 0 0
1/2 1 0 1

0 0 1 0



T =


0.0375 0.0375 0.0375 0.0375
0.4625 0.0375 0.0375 0.0375
0.4625 0.8875 0.0375 0.8875
0.0375 0.0375 0.8875 0.0375


Check your sanity - this should be a transition matrix. Not only that but it’s a
regular transition matrix because the first part of the sum forces all entries of
T 1 to be nonzero. Consequently it obeys our theorem, having an eigenvalue of
λ = 1 and a corresponding probability eigenvector.

The corresponding probability eigenvector is the ranking vector :
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
0.0375
0.0534
0.4711
0.4379


We therefore rank the pages according to the probability that RW will end up
there in the long run:

• P1 has pagerank 0.0375

• P2 has pagerank 0.0534

• P3 has pagerank 0.4711

• P4 has pagerank 0.4379

Think about why this makes sense in the context of the picture.

• The page P3 is important because lots of pages link to it.

• The page P4 only has P3 linking to it but P3 itself is important, so P4 is
too. Not quite as important though.

• Page P1 seems least important since no other pages link to it.

• Page P2 is only slightly more important than P1 because it does have one
page linking to it, that being P1, but P1 is not that important.

Here is a second example in which a page has no outbound link.

Example 7.2. Consider the internet:

P1 P2

P3 P4

Here we have:
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T =
0.15

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 + 0.85


0 0 1/4 0

1/2 0 1/4 0
1/2 1/2 1/4 1

0 1/2 1/4 0


Notice the column of 1/4. Since page 3 has no outbound links there is a 100%
chance that RW will choose a page at random. Since 15% of that is accounted
for in the first matrix we simply account for the other 85% in the second one.

We find the corresponding probability eigenvector to be:


0.1347
0.1919
0.4572
0.2162


• P1 has pagerank 0.1347

• P2 has pagerank 0.1919

• P3 has pagerank 0.4572

• P4 has pagerank 0.2162

7.3 General Pagerank Matrix

In general then for an internet with n pages we have:

T =
0.15

n
[n× n matrix of 1s] + 0.85 [v̄1 v̄n . . . v̄n]

where v̄i is given by:

• If page i has k outbound links then the jth entry of v̄i equals 1/k if page
i has an outbound link to page j and 0 otherwise.

• If page i has no outbound links then every entry of v̄i equals 1/n.

7.4 Scalability

It’s important that we understand that we never need to find the eigenvalues
since we know that λ = 1 is there. This is good because finding the eigen-
values of an n × n matrix requires finding the roots of a polynomial of degree
n and there is no closed formula for the roots of a polynomial of degree 5 or more.

Knowing that λ = 1 is an eigenvalue then requires us “only” to solve a sys-
tem of n equations where n is the number of web pages on the internet.
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7.5 Matlab

There’s nothing particularly new related to Matlab in this chapter but it’s worth
noting that we can write a function m-file which creates the matrix for us. This
is a slightly more sophisticated use of Matlab. The idea is that we’ll first create
a vector which indicates the links. In the following each row is a link from the
first page to the second:

>> links = [1,2;1,3;2,3;3,4;4,3]

links =

1 2

1 3

2 3

3 4

4 3

We also create a scalar containing the total number of pages:

>> pagecount = 4;

And then the following Matlab function m-file does the job:

function m = creategpmatrix(links,pagecount)

% Usage:

% links = [1,2;1,3;2,3;3,4;4,3];

% pagecount = 4;

% creategpmatrix(links,pagecount)

part1 = ones(pagecount,pagecount);

part2 = zeros(pagecount,pagecount);

linksize = size(links);

numlinks = linksize(1);

for i = [1:numlinks]

part2(links(i,2),links(i,1)) = 1;

end

for i = [1:pagecount]

if (sum(part2(:,i)) > 0)

part2(:,i) = part2(:,i)/sum(part2(:,i));

else

part2(:,i) = ones(pagecount,1)/pagecount;

end

end

m = 0.15/pagecount*part1 + 0.85*part2;

end
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As follows:

>> creategpmatrix(links,pagecount)

ans =

0.0375 0.0375 0.0375 0.0375

0.4625 0.0375 0.0375 0.0375

0.4625 0.8875 0.0375 0.8875

0.0375 0.0375 0.8875 0.0375

If you’re curious about what’s going on in the function m-file, let’s walk through
it.

First the command ones(pagecount,pagecount) creates a square matrix filled
with 1s and the command zeros(pagecount,pagecount) creates a square ma-
trix filled with 0s, both of the appropriate size. Next the number of links is
calculated.

The first for loop goes through the links, here length(links) is the number
of rows in the links matrix, hence the number of outbound links (since each
link is a row). For each link from Pi to Pj (which are found in link(i,1) and
link(i,2)) we place a 1 in the (j, i) entry of part2.

The second for loop goes through each column of part2. If the sum is nonzero,
meaning there are outbound links, then it divides each column by its sum. If
the sum is zero, meaning there are no outbound links, then it assigns each entry
in the column to be the same and add to 1, which pretends that the page is
linked to every other page equally.

Finally we assign the matrix 0.15/pagecount*part1 + 0.85*part2 to return.

7.6 Exercises

Exercise 7.1. Consider this mini-internet:

P1 P2

(a) Try to rank the pages in order of importance without doing any calculation.

(b) Find the pagerank of each of the pages.

(c) If there are any disparities between your answer to (a) and (b) explain (if
you can) what the cause of this disparity might be.

Exercise 7.2. Consider this mini-internet:
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P1

P2

P3

P4

P5

P6

(a) Try to rank the pages in order of importance without doing any calculation.

(b) Find the pagerank of each of the pages.

(c) If there are any disparities between your answer to (a) and (b) explain (if
you can) what the cause of this disparity might be.

Exercise 7.3. Suppose that the rule that there is a 15% probability that RW
jumps to a random page were removed, and instead the full 100% (instead of
85%) from each node were distributed across all outbound links. If there are
no outbound links then there is still a 100% probability that RW jumps to a
random page. This could lead to the possiblility that T is not regular.

(a) Give an example of an internet with a non-regular T such that there is no
x̄∗ such that T kx̄0 converges to x̄∗ for all x̄0.

(b) Give an example of an internet with a non-regular T such that there is some
x̄∗ such that T kx̄0 converges to x̄∗ for all x̄0 but that this causes serious
problems with the ranking of the pages. Hint: Can you design an internet
where some of the pages will end up with a pagerank of zero?

Exercise 7.4. The Google Pagerank algorithm works even if the internet is
disconnected. Consider this example:
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P1

P2

P3

P4

P5

P6

Find the pagerank of each of the pages.

Exercise 7.5. Given the transition matrix T we generally find the pagerank
vector by solving the eigenvector equation (A − I)x̄ = 0̄, meaning we find the
eigenvector corresponding to the eigenvalue λ = 1. However it’s also possible
simply to pick an arbitrary x̄0 and then find T kx̄0 for successive values of k
until successive entries of T kx̄0 all differ by a predetermined number. Starting
with x̄0 = [1, 0, 0, 0, 0, 0]T and using the T from the previous problem, find the
smallest k so that all entries in T kx̄0 and T k−1x̄0 are equal up to and including
the fourth decimal place.

Exercise 7.6. In an internet with n pages all of which link to one another it
makes sense that all of the pages have the same pagerank. Show that this is the
case - find the matrix T and show that the vector with all entries equal (and
adding to 1) is an eigenvector corresponding to eigenvalue λ = 1.

Exercise 7.7. A valid question is whether the 85/15 split has an impact not
just on the pagerank but on the order of the pages in terms of ranking. For
example if we used 60/40 instead would a higher ranked page using 85/15 still
be higher ranked using 60/40.

(a) Justify informally why it seems reasonable that the order of the pages in
terms of ranking would not be affected.

(b) Test this assumption on the following internet by finding the pageranks
using both 85/15 and 60/40 splits.
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P1 P2

P3

(c) The above internet can also be analyzed with a 1/0 split. Find the pageranks
using this split.

Exercise 7.8. Find the pagerank of the pages in the following internet. You
will definitely want to use technology for this!

P1

P2P3

P4

P5

P6

P7 P8

P9

P10

Exercise 7.9. Explain why having outbound links on your webpage will not
affect your Google Pagerank.

Exercise 7.10. Write down the transition matrix for an internet with n pages
for which the only links are from page 1 to page 2, page 2 to page 3, ... page
n− 1 to page n.

Exercise 7.11. Why does the Google Pagerank produce more reasonable re-
sults than simply assigning a page a ranking in accordance with the number of
pages that link to it?
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