
Image Compression

Justin Wyss-Gallifent

July 21, 2021

10.1 Image Representation . . . . . . . . . . . . . . . . . . . . . . . . 2
10.2 Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 3
10.3 Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.4 Data Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.5 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



10.1 Image Representation

There are a variety of ways to store image data but when graphics are displayed
pixel-by-pixel then we need to store data for each pixel.

Typical approaches:

• For a color image combine Red, Green and Blue, each with an integer
between 0 and 255 inclusive. This gives a total of 2563 = 16777216 colors
available.

• For a grayscale image assign a single integer between 0 and 255 inclusive,
where 0 indicates Black and 255 indicates White.

• For a grayscale image assign a single real number between 0 and 1 inclusive,
where 0 indicates Black and 1 indicates White.

In order to facilitate easy mathematical calculations (no integer truncation, etc.)
we’re going to stick with the third option.
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Example 10.1. For example the following image consists of no grayscale, only
black and white:

This image is represented by the matrix:


1 0 1 1 1 0
1 1 0 1 1 1
0 1 0 1 0 1
0 1 1 0 1 0



10.2 Image Compression

We saw in the previous chapter that we can use the singular value decomposition
of a matrix to find an approximation to that matrix which preserves a certain
amount of the original matrix’s variance.

It follows that if the matrix represents an image then an approximation to that
matrix can be thought of as an image which preserves a certain amount of the
original image’s variance.

Example 10.2. If we find the SVD of this matrix we have:

A =


−0.51 0.57 −0.50 0.40
−0.66 −0.29 −0.19 −0.66
−0.40 −0.64 0.18 0.63
−0.38 0.42 0.82 −0.05




3.198 0 0 0 0 0
0 1.678 0 0 0 0
0 0 1.235 0 0 0
0 0 0 0.6576 0 0

V T

If we set the smallest singular value to zero to create Σ′ and compute:

A′ = UΣ′V T =


1.103 0.030 0.856 0.848 1.122 0.011
0.831 0.951 0.236 1.248 0.800 0.982
0.162 1.047 −0.226 0.762 0.191 1.018
−0.012 0.997 1.017 0.018 0.986 −0.001


Before we charge ahead and look at the resulting image we notice an issue. The
values in this new matrix are not necessarily between 0 and 1.
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There are two possible approaches to this. The first would be to renormalize
the values between 0 and 1. However there’s a good argument against this, that
being that (for example) a value of 1 is supposed to represent completely White
so if we had a value such as 1.1 then rescaling would interpret the first as not
completely White but rather as slightly more grey, which is not accurate at all.

Instead we’ll take the second approach and simply leave the values alone. Values
above 1 will be treated as White (like 1) and values below 0 will be treated as
black (like 0).

Example 10.3. With this in mind our previous example, preserving three
singular values (and 97.12% of the matrix data variance), would be, along with
the original:

−→

If we do it again preserving two singular values (and 86.95% of the matrix data
variance), along with the original:

−→

and then one singular value (and 68.18% of the matrix data variance), along
with the original:

−→

As the number of singular values decreases the image loses variance and becomes
more uniform while still trying to retain as much variance as possible.

Here is an even better example:
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Example 10.4. The following image is represented by a 200 × 200 matrix A:
This is Justin, age 8.

If we do a SVD for the matrix A we see that there are 200 singular values. We
won’t list them all but here are the ones that are greater than 0.5:

114.6751, 23.1226, 17.6162, 10.0497,

8.8713, 7.4690, 7.0125, 5.5884, 4.7874, 4.4234, 4.1422, 3.7599, 3.1233,

2.9382, 2.8150, 2.6498, 2.3993, 2.1972, 2.0984, 1.9532, 1.8977, 1.7923,

1.7188, 1.5803, 1.4746, 1.3644, 1.3258, 1.3239, 1.1909, 1.1655, 1.0972,

1.0582, 1.0382, 1.0117, 0.9170, 0.9015, 0.8496, 0.7791, 0.7556, 0.7100,

0.6853, 0.6507, 0.6407, 0.6081, 0.5906, 0.5732, 0.5585, 0.5356, 0.5013

If we zero out all but those highest 100, recreate the matrix and view we get:
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It’s really hard to see any difference here.

We can do this preserving any number of values.

Here are the images resulting from preserving 200 (all), 100, 50, 20, 10, 5 and 1
singular values:
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200 values 100 values

50 values 20 values

10 values 5 values

2 values 1 value
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We can see that the rank 50 version is still quite good, it’s only when we get to
rank 20 that noticeable deterioration of image quality starts to take place.

The beautiful thing about the final rank 1 version is that the entire image is
constructed out of a single vertical vector whose values correspond to shades of
grey. Each column is a multiple of that value and you can see that easily!

10.3 Image Quality

The image quality can be defined as the proportion of variance preserved in the
new image. Recall that this is the sum of the squares of the retained singular
values divided by the sum of the squares of all of the singular values.

In the Justin case if we look at the version preserving 50 singular values (the
last pretty good one) then we find that the image quality can be defined as:

s21 + ... + s250
s21 + ... + s2200

= 0.999769

meaning that we’ve preserved 99.9769% of the original image variance. Loosely
speaking this image is 99.9769% as good as the original.

Here are the values for all of the versions:

# Singular Values Variance Preserved Quality Percentage
200 1.00 100
100 0.999985 99.9985
50 0.999769 99.9769
20 0.997387 99.7387
10 0.991623 99.1623
5 0.979279 97.9279
2 0.945426 94.5426
1 0.908489 90.8489

This is interesting because it gives us a sense of how much variance we would
need to preserve to keep a reasonable-looking picture, albeit for only one exam-
ple. While 90% seems like a lot, in this case the resulting picture (the final one)
is not good at all, and we’d probably aim for perhaps 99.5% or more.

If we set a threshold at 99.5% then a quick calculation shows that we need at
least 14 singular values to do the job.

10.4 Data Savings

Importantly we need to address why we would do this at all.

Here we’ll look at n × n (square) images. Images which are not square take a
little tweaking and are addressed in the exercises.
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If we wish to save a grayscale n × n image in a matrix A using one value per
pixel then we need to save n2 values.

Suppose instead we use the SVD and preserve k < n singular values. In the pre-
vious chapter we saw that this means we’re essentially recalculating the matrix
A′ as follows:

ā′1 = s1v11ū1 + s2v12ū2 + ... + skv1kūk

ā′2 = s1v21ū1 + s2v22ū2 + ... + skv2kūk

...
...

ā′n = s1vn1ū1 + s2vn2ū2 + ... + skvnkūk

If we think of the right hand side as simply linear combinations of ū1, ..., ūk

then all we really need to save are the vectors ū1, ..., ūk, each in Rn and therefore
consisting of n values each for a total of kn values, and the coefficients to find
each ā′i, consisting of k values each for a total of kn values again. Thus in sum
total we need to save 2kn values.

The value 2kn
n2 = 2k

n can be throught of as the compression ratio and provided
2nk < n2, or k < n

2 , we’ve saved space.

Example 10.5. If we again focus on the Justin example, preserving 20 singular
values, we can store the image using 2kn = 2(20)(200) = 8000 values instead of
2002 = 40000 values for a compression ratio of 8000

40000 = 0.20 = 20%.

Preserving 50 singular values, quite a decent picture, we can store the image
using 2kn = 2(50)(200) = 20000 values instead of 2002 = 40000 values for a
compression ratio of 20000

40000 = 0.50 = 50%.

10.5 Matlab

A matrix with values between 0 and 1 can be displayed in Matlab as follows,
where 0 is black and 1 is white:

>> A = [1 0.5 1 1 0.9 0;1 1 0 1 1 1;0 0.1 0 1 0 1;0 1 1 0 1 0.3];

>> imshow(A,’border’,’tight’,’InitialMagnification’,1000)

Note that the ’InitialMagnification’,1000 setting makes the picture 1000%
of the original size, otherwise our image (which is only a few pixels wide and
high) would be too small to see.

9



The ’border’,’tight’ just gets rid of the border around the image. This isn’t
really necessary unless you’re going to save the image and don’t want to save
the border.

We can then do a singular value decomposition on it and manipulate it as
before. For example the matrix above has four singular values so let’s zero out
the smallest and redisplay:

>> [U,S,V] = svd(A);

>> SP = S;SP(4,4)=0;

>> AP = U*SP*transpose(V);

>> imshow(AP,’border’,’tight’,’InitialMagnification’,1000)

Now then, if we’d like to read in a graphics file we can do so quickly. We
use imread to read the image into a matrix. Next we use rgb2gray to ensure
the image is grayscale (otherwise the matrix might have an extra dimension
containing red, blue and green values). After that we use im2double to convert
the values from uint8 (the default unsigned integer values, which we can’t
directly use svd on) to double-precision real numbers (more than sufficient for
our purposes but Matlab default). Lastly we scale them between 0 and 1 by
subtracting the minimum of all of them (making the minimum 0) and then
dividing by the maximum of all of them (making the maximum 1).

Note that A(:) refers to all elements in the matrix A so that wrapping those in
max and min gets the maximum and minimum of all elements.

All together:

>> A = imread(’justin.jpg’);

>> A = rgb2gray(A);A = im2double(A);A = A-min(A(:));A = A/max(A(:));

If we’d like to view it:

>> imshow(A,’border’,’tight’);

Now then, if our file has lots of singular values and we want to zero out a bunch
of them, a for loop can help. For example the above justin.jpg file is the
image from this chapter and has 200 singular values. If we only want to keep
the first 100 and plot:

>> [U,S,V] = svd(A);

>> SP = S;for i=[101:200];SP(i,i)=0;end;

>> AP = U*SP*transpose(V);

>> imshow(AP,’border’,’tight’);
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Okay, so how about calculating the proportion of variance? Well, we can use the
diag command to extract the values out of our Σ and play with the resulting
vector of values. For example here’s the proportion of variance in the first 100
singular values of the original Justin picture from this chapter, loaded earlier:

>> svals = diag(S);

>> vpa(sum(svals(1:100).^2)/sum(svals.^2),6)

ans =

0.999985

Notation Note: The reason we use .^ instead of ^ is that diag(S) and hence
svals and svals(1:100) are all vectors which are treated as matrices in Matlab.
Simply doing, for example, svals^2 would attempt in this case to multiply a
200× 1 matrix by itself, which doesn’t work. What we really want to do is take
each entry in that matrix and square it, and this is what .^2 does. Basically it
applies the ^2 operation element-by-element.

10.6 Exercises

Exercise 10.1. Consider the following image:

(a) Enter this image into a 4×4 matrix A. Assume the shades you see are only
0, 0.5 and 1.

(b) Find the SVD for A.

(c) Simplify the matrix preserving 3, 2 and then 1 singular value. Draw the
best image representation you can of each matrix.

Exercise 10.2. Consider the following image:
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(a) Enter this image into a 5×5 matrix A. Assume the shades you see are only
0, 0.5 and 1.

(b) Find the SVD for A.

(c) Simplify the matrix preserving 4, 3, 2 and then 1 singular value. Draw the
best image representation you can of each matrix.

Exercise 10.3. Find a square image on the internet of reasonable size; 200×200
or thereabouts is good.

(a) Load this into the Matlab matrix A, convert to grayscale if necessary and
scale the values between 0 and 1.

(b) Find the SVD for A.

(c) How many singular values are there?

(d) Simplify the image by preserving only 75% of the singular values. What is
the percentage of data quality preserved? Print the result.

(e) Simplify the image by preserving only 50% of the singular values. What is
the percentage of data quality preserved? Print the result.

(f) Simplify the image by preserving only 25% of the singular values. What is
the percentage of data quality preserved? Print the result.

(g) What is the minimum number of singular values that must be preserved in
order to preserve 99.9% of the data quality? What level of data compression
would this achieve? Simplify the image accordingly and print the result.

Exercise 10.4. Try to find two images, both 200×200, both photographs, one
requiring as few singular values as possible and one requiring as many singular
values as possiboe, both to achieve 99.9% image variance. Identify, if you can,
what about the images leads to this disparity. Lots of darks and lights? Regular
patterns? Anything you can find!

Exercise 10.5. Assume for each of the following that the singular values have
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been given for a 10 × 10 image. Determine the minimum number of singular
values in decreasing order that would need to be preserved to keep 99.9% of the
image variance and what the resulting data compression ratio would be.

(a) {80.2608, 63.3520, 20.5871, 8.4696, 2.8841, 1.6763, 0.7962, 0.6926, 0.6553, 0.6520}

(b) {138.5481, 49.5181, 16.5869, 4.9396, 3.2379, 1.5248, 1.1992, 1.0277, 1.0208, 0.9786}

(c) {446.1649, 163.4218, 43.8892, 13.7979, 4.7417, 1.3437, 1.0500, 0.6422, 0.4532, 0.4484}

(d) {209.4851, 28.1916, 22.8720, 11.8304, 6.3254, 2.7847, 1.2043, 0.9255, 0.8765, 0.8722}

Exercise 10.6. Suppose we simplify an m × n (not necessarily square) image
using k singular values. What is the resulting data compression ratio? What
criteria on k would make this worth doing?
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