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3.1 Introduction

Let’s go back to the matrix equation

Ax̄ = b̄

We know that a unique solution exists if A is invertible and if A is not invertible
then there are either no solutions or infinitely many solutions.

Specifically the question that we’d like to address here is what can we do if there
are no solutions at all? One answer might be to just stop, however maybe we
could ask the question - what’s the nearest solution we could find?

In other words if we can’t find x̄ so that Ax̄ = b̄, can we find some x̄ so that Ax̄
is as close as possible to b̄?

More rigorously can we find some x̂ such that:

For all x̄ we have ||Ax̂− b̄|| ≤ ||Ax̄− b̄||

3.2 Reminder - Solutions and Column Space

First let’s recall:

Definition 3.2.0.1. Given an n × m matrix A the column space of A is the
subspace of Rn given by:

Col(A) = span {Columns of A}

Fact 3.2.0.1. The column space of A is exactly the vectors b̄ such that Ax̄ = b̄
has at least one solution.

To reinforce this, a simple example will do:

Example 3.1. The equation 1 2
0 3
−1 0

 x̄ =

 4
5
6
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has a solution if and only if there are x1, x2 with 1 2
0 3
−1 0

 x̄ =

 4
5
6


 1 2

0 3
−1 0

[ x1

x2

]
=

 4
5
6


 1x1 + 2x2

0x1 + 3x2

−1x1 + 0x2

 =

 4
5
6


x1

 1
0
−1

+ x2

 2
3
0

 =

 4
5
6


 4

5
6

 ∈ col


 1

0
−1

 ,
 2

3
0



3.3 The Intuition and Theory

So the situation we’re in is that b̄ is not in Col(A) and we wish to find x̂ so that
Ax̂, which is in Col(A), is as close as possible to b̄.

Here’s a picture of the situation:

ō

b̄

Col(A)

Close As Possible!

This picture suggests that we can obtain a solution by projecting b̄ onto Col(A)
to get PrCol(A)b̄ and then finding x̂ to solve the equation:

Ax̂ = PrCol(A)b̄

Assuming this is correct, the problem with this approach, practically, is that
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calculating PrCol(A)b̄ requires having an orthogonal basis for Col(A) and this is
procedurally intense especially when A is large. So what we’ll do is find a sneaky
way to find x̂ a different way. Just to be clear, we will solve this equation, but
we won’t solve it by finding PrCol(A)b̄.

3.4 Theory: Least-Squares Solution

The approach is based on the following two things:

(a) There is a sneaky way of finding x̂ such that Ax̂ = PrCol(A)b̄.

(b) The x̂ we find actually does satisfy ||Ax̂− b̄|| ≤ ||Ax̄− b̄|| for all x̄.

First, let’s see how we can do part (a). Finding x̂ such that Ax̂ = PrCol(A)b̄
means the vector Ax̂− b̄ is perpendicular to Col(A) as illustrated by this picture:

0̄
Ax̂

Ax̂− b̄b̄

Col(A)

From here note that Ax̂− b̄ being perpendicular to Col(A) is equivalent to

Ax̄ · (Ax̂− b̄) = 0 for all x̄

(Ax̄)T (Ax̂− b̄) = 0 for all x̄

x̄TAT (Ax̂− b̄) = 0 for all x̄

AT (Ax̂− b̄) = 0̄

ATAx̂ = AT b̄

(Note that x̄T ȳ = 0 for all x̄ means ȳ = 0̄ because no nonzero vector can be
perpendicular to every vector.)

So we simply solve this final equation instead. Notice that this final equation
must have a solution since we’re effectively solving Ax̂ = PrCol(A)b̄. It may
have more than one, though, and it will have exactly one precisely when the
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columns of A are linearly independent (because this is always the case for sys-
tems of equations that have solutions) which is precisely when ATA is invertible
(because we’re solving ATAx̂ = AT b̄ to get the job done.)

Second, how about part (b). We want to make sure that finding x̂ such that
Ax̂ = PrCol(A)b̄ actually satisfies ||Ax̂− b̄|| ≤ ||Ax̄− b̄|| for all x̄.

Well as we’ve seen this x̂ is such that Ax̂− b̄ is perpendicular to Col(A).

For any x̄, since Ax̄ and Ax̂ are both in Col(A), so is Ax̄−Ax̂, so then Ax̄−Ax̂
is perpendicular to Ax̂− b̄.

From here observe that:

(Ax̂− b̄) + (Ax̄−Ax̂) = Ax̄− b̄

and since the two on the left are perpendicular by the Pythagorean Theorem
we have:

||Ax̂− b̄||2 + ||Ax̄−Ax̂||2 = ||Ax̄− b̄||2

and therefore

||Ax̂− b̄|| ≤ ||Ax̄− b̄||

3.5 Practical: Least-Squares Solution

Definition 3.5.0.1. Given the matrix equation

Ax̄ = b̄

a least-squares solution is a solution x̂ satisfying

||Ax̂− b̄|| ≤ ||Ax̄− b̄|| for all x̄

Such an x̂ will also satisfy both

Ax̂ = PrCol(A)b̄

and
ATAx̂ = AT b̄

This latter equation is typically the one used in practice.

Note that there may be either one or infinitely many least-squares solutions.

If the columns of A are linearly independent then there is exactly one solution
and this solution is

x̂ = (ATA)−1AT b̄
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If the columns of A are not linearly independent then there are infinitely many
least-squares solutions.

In most situations we will encounter there is just one least-squares solution.
From a real-world standpoint this is because we typically use least-squares for
overdetermined systems (more equations than unknowns) which yields a matrix
equation in which the matrix has more rows than columns. This typically results
in columns which are linearly independent.

Definition 3.5.0.2. The least-squares error is the difference

||Ax̂− b̄||

which measures how far our Ax̂ is from the desired b̄.

Theorem 3.5.0.1. If the columns of A are linearly independent and if Ax̄ = b̄
has a solution then the least-square solution is the actual solution.

Proof. If Ax̄ = b̄ has a solution then b̄ ∈ Col(A) and so PrCol(A)b̄ = b̄ and so
Ax̂ = PrCol(A)b̄ is equivalent to Ax̂ = b̄. Thus the solution to ATAx̂ = AT b̄
satisfies Ax̂ = b̄.

Corollary 3.5.0.1. If A is invertible then this is even more obvious.

Proof. If A is invertible then(
ATA

)−1
AT b̄ = A−1

(
AT
)−1

AT b̄ = A−1b̄

in which case the solution to the least-squares equation reduces to the solution
to the original equation.

Example 3.2. Consider the system of equations

x+ 2y = 6

x+ y = 4

x− y = 1

I’ve chosen this so it’s clear that there is no solution. The first two equations
have solution x = 2, y = 2 but this fails in the third, so there is no solution to
all three.

Rephrased as a matrix equation: 1 2
1 1
1 −1

 x̄ =

 6
4
1
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We instead solve the least-squares equation:

 1 2
1 1
1 −1

T  1 2
1 1
1 −1

 x̂ =

 1 2
1 1
1 −1

T  6
4
1


[

1 1 1
2 1 −1

] 1 2
1 1
1 −1

 x̂ =

[
1 1 1
2 1 −1

] 6
4
1


[

3 2
2 6

]
x̂ =

[
11
15

]
x̂ =

[
3 2
2 6

]−1 [
11
15

]
x̂ =

[
18/7
23/14

]

The least-squares error is given by:

||Ax̂− b̄|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
 1 2

1 1
1 −1

[ 18/7
23/14

]
−

 6
4
1

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣
 −1/7

3/14
−1/14

∣∣∣∣∣∣
∣∣∣∣∣∣

=
1√
14

≈ 0.2673

This is as small as ||Ax̄ − b̄|| can be for any x̄. You can test this to convince
yourself by plugging in some other x̄, maybe some close to x̂ and some not.

Note that x̂ ≈
[
2.57143
1.64286

]
.

∣∣∣∣∣∣∣∣A [2.61.6

]
− b̄
∣∣∣∣∣∣∣∣ ≈ 0.28284 > 0.26726∣∣∣∣∣∣∣∣A [2.55

1.62

]
− b̄
∣∣∣∣∣∣∣∣ ≈ 0.27911 > 0.26726∣∣∣∣∣∣∣∣A [32

]
− b̄
∣∣∣∣∣∣∣∣ ≈ 1.41421 > 0.26726
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Example 3.3. Consider the system

x+ 2y = 3

x+ 2y = 5

Clearly this has no solutions. As a matrix equation we have[
1 2
1 2

] [
x
y

]
=

[
3
5

]
Notice that the columns of A are not linearly independent. The least-squares
approach gives us: [

1 2
1 2

]T [
1 2
1 2

] [̂
x
y

]
=

[
1 2
1 2

]T [
3
5

]
[
1 1
2 2

] [
1 2
1 2

] [̂
x
y

]
=

[
1 1
2 2

] [
3
5

]
[
2 4
4 8

] [̂
x
y

]
=

[
8
16

]
We see that there are infinitely many solutions of the form[

4− 2α
α

]
for α ∈ R

Each of these is then a least-squares solution.

3.6 Picture of a Simple Case

In closing, a really simple example can help nail down what we’ve done.

Consider the matrix equation [
2
1

]
[x1] =

[
2
2

]
Obviously there is no solution. Graphically Col(A) is the set of multiples of[

2
1

]
and there is no solution since

[
2
2

]
is not a multiple of

[
2
1

]
.

When we solve the least-squares problem as follows:[
2
1

]T [
2
1

]
[̂x1] =

[
2
1

]T [
2
2

]
[5] [̂x1] = [6]

[̂x1] = [6/5]
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So that

A[̂x1] =

[
2
1

]
[6/5] =

[
2.4
1.2

]
which is in Col(A) and is as close as possible to

[
2
2

]
, with that distance being

the least-squares error:∣∣∣∣∣∣∣∣[ 2.4
1.2

]
−
[

2
1

]∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣[ 0.4
0.2

]∣∣∣∣∣∣∣∣ =
√

0.42 + 0.22 =
√

0.2

as shown here:

span

{[
2
1

]}

[
2.2
1.1

]

[
2
2

]
√

0.2

3.7 Matlab

The transpose of a matrix can be done either with the transpose command or
an apostrophe:

>> A = [1 2;1 1;1 -1];

>> transpose(A)

ans =

1 1 1

2 1 -1

>> A’

ans =

1 1 1

2 1 -1

Practically speaking if the columns of A are linearly independent then the least-
squares solution can be easily found in Matlab:
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>> A = [1 2;1 1;1 -1];

>> b = [6;4;1];

>> inv(A’*A)*A’*b

ans =

2.5714

1.6429

The norm command is useful for the least-squares error:

>> A = [1 2;1 1;1 -1];

>> b = [6;4;1];

>> x=inv(A’*A)*A’*b;

>> norm(A*x-b)

ans =

0.2673

3.8 Exercises

Exercise 3.1. Find the least-squares solution and least-squares error for the
matrix equation 

1 2 3
−1 0 2

5 1 1
2 2 0

 x̄ =


1
2
3
4



Exercise 3.2. Find the vector in colA closest to b̄ where:

A =

 1 2
0 −3
2 6

 and b̄ =

 1
1
0


Exercise 3.3. Using least squares, find the vector in

span




1
2
−1

0

 ,


3
3
0
3


 closest to


0
0
0
1


Exercise 3.4. Assuming the dimensions all work out, is it possible for the
matrix equation ATAx̄ = AT b̄ to have no solutions? Explain.

Exercise 3.5. Could a system of equations with more variables than equations
have a unique least squares solution? Explain.
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Exercise 3.6. Using least squares, find the vector in

span

{[
1
2

]}
closest to

[
5
5

]

Exercise 3.7. Use the method of least-squares to find the point on the line
y = 3x closest to (2, 3).

Exercise 3.8. Suppose A is invertible so that Ax̄ = b̄ actually has a single
solution but you use the method of least-squares anyway. Show that the solution
you get via least-squares is the actual solution. Hint: Manipulate the least-
squares formula.

Exercise 3.9. Show that the following does not have a unique least-squares
solution by attempting to find such a solution and explaining where the process
fails:

x+ 2y = 4

x+ 2y = 3

Exercise 3.10. Consider the following matrix equation Ax̄ = b̄ with: 1 2
−1 1

0 3

 x̄ =

 1
3
0


(a) Find the least-squares solution the long way:

(i) Find an orthogonal basis for Col(A). You can do this by calling the
columns c̄1 and c̄2 and then using {c̄1, c̄2 − Prc̄1 c̄2} as a basis.

(ii) Find PrCol(A)b̄. This equals the sum of the projections of b̄ onto each

of the basis vectors. Call this b̂.

(iii) Solve Ax̄ = b̂.

(b) Find the least-squares solution using the easy method and verify that they’re
the same.

Exercise 3.11. Repeat the previous question with: 2 −2
1 4
1 2

 x̄ =

 −1
3
1
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Exercise 3.12. Explain why a least-squares problem always has a solution.
Your answer should touch on the issue of the column space and what is really
going on under the hood.

Exercise 3.13. Assuming it exists we know that the least-squares solution is
given by:

x̂ =
(
ATA

)−1
AT b̄

What is mathematically wrong with the following attempt to simplify this?
Specifically, which equals signs are not valid and why?

x̂ =
(
ATA

)−1
AT b̄ = A−1

(
AT
)−1

AT b̄ = A−1b̄

Exercise 3.14. Suppose we’re solving for the least squares solution to Ax̄ = b̄.
Why will switching the order of the columns in A have no effect on the solution?
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