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9.1 Introduction

For almost all of our uses of the singular value decomposition we’ll be thinking of
an m×n matrix as made up of columns where each column represents something
useful. For now just think about the matrix as containing n points in Rm.

Thinking this way, it turns out that the SVD contains a lot of useful information
about the points.

Before we proceed we should note that we will only need the matrices U and
Σ but not V so typically we’ll just write V T in our SVD instead of actually
writing V explicitly.

The general approach will be as follows:

(I) Get some geometric inspiration for what the left-singular vectors (the
columns of U) represent.

(II) Get some algebraic evidence and figure out what the singular values (the
entries in Σ) represent.

(III) Put together a conclusion and solidify this with examples.

Before proceeding, two definitions:

Definition 9.1.0.1. The variance of a set of vectors equals the sum of the
squares of the norms of the vectors.

Definition 9.1.0.2. The norm of a matrix, denoted ||A||, equals the square
root of the sum of the squares of the entries, meaning it equals the square root
of the variance of the columns of the matrix.

It also follows that two matrices are close to one another (in every entry) if the
norm of their difference is small.

9.2 Geometric Inspiration for U

Let’s start off with an example:

Example 9.1. Consider the matrix:

A =

[
4 1 −2 −3
1 1 0 −2

]
This matrix has the following SVD:
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A =

[
−0.9320 −0.3625
−0.3625 0.9320

] [
5.855 0 0 0

0 1.312 0 0

]
V T

If we plot the columns of A as points along with the lines generated by each of
the the columns of U (call these ū1 and ū2) we see:

ū1

ū2

What do we see? It looks like the data is really spread out in the ū1 direction
and not so spread out in the ū2 direction.

What is this example suggesting? Well, it looks like:

(a) Column ū1 (associated to s1, the larger singular value) is indicating the
direction in which the columns of A are most spread out.

(b) Column ū2 (associated to s2, the smaller singular value) the one associated
to the second largest singular value, is indicating the direction perpendicular
to ū1 in which the columns of A are second most spread out.

It may seem reasonable to suggest that if there are more than two columns in
U that they tell us how the columns of A are most spread out in perpendicular
directions of decreasing importance.

9.3 Algebraic Evidence

If we look at the SVD of an m× n matrix A:

A = UΣV T
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where the dimensions are m×m, m× n (with k singular values s1, ..., sk) and
n× n respectively, then a relatively straightforward calculation shows that the
the columns of A are calculated by:

ā1 = s1v11ū1 + s2v12ū2 + ... + skv1kūk

ā2 = s1v21ū1 + s2v22ū2 + ... + skv2kūk

...
...

ān = s1vn1ū1 + s2vn2ū2 + ... + skvnkūk

First, this tell us that each column of A is built out of the columns in U , which
makes sense since the columns of U form a basis for Rm.

However since s1 ≥ s2 ≥ ... ≥ sk ≥ 0 this is suggesting exactly what we’ve seen
geometrically, that ū1 is most important, ū2 next most and so on.

In addition this tells us that if we create Σ′ by taking Σ and replacing some of the
si by 0, and if we then recalculate A′ = UΣ′V T , the result will be the orthogonal
projection of the columns of A onto the columns of U corresponding to the si
which remain because essentially we are ignoring the directions associated to
the si we eliminated.

To help clarify let’s revisit our initial example:

Example 9.2.

A =

[
4 1 −2 −3
1 1 0 −2

]
=

[
−0.9320 −0.3625
−0.3625 0.9320

] [
5.855 0 0 0

0 1.312 0 0

]
V T

If we set s2 = 0 and recalculate the matrix product:

[
−0.9320 −0.3625
−0.3625 0.9320

] [
5.855 0 0 0

0 0 0 0

]
V T =

[
3.812 1.2060 −1.7370 −3.281
1.483 0.4693 −0.6757 −1.276

]

The result is the projection of the points onto ū1:
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ū1

If we set s1 = 0 and recalculate the matrix product:

[
−0.932 −0.3625
−0.3625 0.932

] [
0 0 0 0
0 1.312 0 0

]
V T =

[
0.1878 −0.2064 −0.2628 0.2815
−0.4829 0.5307 0.6757 −0.7236

]

The result is the projection of the points onto ū2:

ū2

Moreover the calculation from earlier also tells us the meaning of the si. If we
take the square of the norm of each side, keeping in mind that the vectors in U
and in V are orthonormal, we see:

5



||ā1||2 = s2
1v

2
11 + s2

2v
2
12 + ... + s2

kv
2
1k

||ā2||2 = s2
1v

2
21 + s2

2v
2
22 + ... + s2

kv
2
2k

...
...

||ān||2 = s2
1v

2
n1 + s2

2v
2
n2 + ... + s2

kv
2
nk

And then if we add these equations:

||A||2 = ||ā1||2 + ||ā2||2 + ... + ||ān||2 = s2
1 + s2

2 + ... + s2
k

This tells us that the total variation in all of the columns of A equals the sum
of the squares of the singular values.

Moreover since each si corresponds to ūi, this tells us that the total variation in
all of the columns of A in the direction of ūi equals s2

i and that the proportion
of the total variation in all of the columns of A in the direction of ūi equals

s2
i

s2
1 + s2

2 + ... + s2
k

9.4 Summary and Matrix Comment

So where does this leave us? In summary so far, for an m × n matrix A when
we find the singular value decomposition A = UΣV T then:

(a) The ūi break down the directions in which the data is spread out.

(b) The order of the directions ū1, ..., ūm gives us the order in which the variance
of the data goes from largest to smallest

(c) In the direction ūi the variance of the data equals s2
i and the proportion of

the total variance of the data equals s2
i /(s2

1 + s2
2 + ... + s2

k).

(d) If we create Σ′ by taking Σ and replacing some of the si by 0, and if we
then recalculate A′ = UΣ′V T , the result will be the orthogonal projection
of the columns of A onto the columns of U corresponding to the si which
remain.

As a consequence of the above:

(a) We can simplify the data (meaning keeping only the large-scale trends with
the most variance) by retaining only the large singular values, thereby keep-
ing only the primary directions of variance in which the columns of A.

6



(b) If we retain only s1, ..., sj (with j < k) then the total variance in the data
that is preserved can be calculated as:

s2
1 + ... + s2

j

s2
1 + ... + s2

k

(c) If we wish to simplify the data while retaining a certain amount of variance
we can choose how many singular values to preserve accordingly.

(d) The columns in the matrix A′ will generally be close to the columns in A,
which translates to the matrix A′ being close to A because ||A − A′|| is
small.

Let’s try to summarize with some detailed examples.

Example 9.3. Consider the matrix with SVD:

A =

[
−1 1 2
−1 2 2

]
=

[
−0.6287 −0.7777
−0.7777 0.6287

] [
3.8287 0 0

0 0.5840 0

]
V T

The total variance in the data is:

3.82872 + 0.58402 = 15

The left-singular vector of A corresponding to s1 = 3.8287 captures

3.82872

3.82872 + 0.58402
= 0.9773 = 97.73%

of the total variance in the data, meaning that the data is extremely spread out
in that direction.

The left-singular vector of A corresponding to s2 = 0.5840 captures

0.58402

3.82872 + 0.58402
= 0.0227 = 2.27%

of the total variance in the data, meaning that the data is not very spread out
in that direction.

We can see that if we let Σ′ be Σ but with the smaller singular value set to zero
and recalculate:
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A′ = UΣ′V T =

[
−0.6287 −0.7777
−0.7777 0.6287

] [
3.8287 0 0

0 0 0

]
V T

=

[
−0.8841 1.3730 1.7683
−1.0937 1.6984 2.1873

]

The result is almost A in the sense that the columns of A have been rebuilt
using only the first building-block vector. Take a second to look at the values
in A and A′. They’re close to one another:

A =

[
−1 1 2
−1 2 2

]
≈
[
−0.8841 1.3730 1.7683
−1.0937 1.6984 2.1873

]

Example 9.4. Consider the matrix:

A =

 1 2 4 3
−1 0 2 5

0 1 5 5


The singular value decomposition A = UΣV T has:

A = UΣV T

=

 −0.5098 0.6299 −0.586
−0.4949 −0.7719 −0.3991
−0.7037 0.08654 0.7052

 10.1205 0 0 0
0 2.8502 0 0
0 0 0.6722 0

V T

The total variance in the data is:

10.12052 + 2.85022 + 0.67222 = 111

The variance captured by each of the three directions is:

• The left-singular vector of A corresponding to s1 = 10.12 captures

10.12052

10.12052 + 2.85022 + 0.67222
= 0.9227 = 92.27%

of the total variance.
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• The left-singular vector of A corresponding to s2 = 2.85 captures

2.85022

10.12052 + 2.85022 + 0.67222
= 0.0732 = 7.32%

of the total variance.

• The left-singular vector of A corresponding to s3 = 0.6722 captures

0.67222

10.12052 + 2.85022 + 0.67222
= 0.0041 = 0.41%

of the total variance.

Moreover if we wanted to ignore the last direction and project all the points
onto the first two directions we simply take Σ, change the 0.6722 to 0 to get Σ′,
and recalculate.

A′ = UΣ′V T =

 0.8905 1.7265 4.2251 2.8669
−1.0746 −0.1863 2.1533 4.9094

0.1318 1.3291 4.7290 5.1602


The new matrix is said to preserve

10.12052 + 2.85022

10.12052 + 2.85022 + 0.67222
= 0.9959 = 99.59%

of the variance of the original matrix. Really compare the values in the A and
A′. They are quite close!

A =

 1 2 4 3
−1 0 2 5

0 1 5 5

 ≈
 0.8905 1.7265 4.2251 2.8669
−1.0746 −0.1863 2.1533 4.9094

0.1318 1.3291 4.7290 5.1602


Example 9.5. Consider the matrix:

A =


1 2 3 0 5 2
3 4 −1 2 3 4
5 4 1 2 0 0
6 4 1 2 3 −1
6 3 1 2 3 4


Suppose we wanted to simplify the columns of this matrix as much as possible
while retaining 95% of the variance.

We calculate the singular value decomposition A = UΣV T and find that the
singular values are {15.0759, 5.8017, 4.2418, 2.1720, 1.5318}
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The total variance in the data is:

15.07592 + 5.80172 + 4.24182 + 2.17202 + 1.53182 = 286

Noting that:

15.07592 + 5.80172

15.07592 + 5.80172 + 4.24182 + 2.17202 + 1.53182
= 0.9124

and

15.07592 + 5.80172 + 4.24182

15.07592 + 5.80172 + 4.24182 + 2.17202 + 1.53182
= 0.9753

We see that we will need to preserve the largest three singular values and we
will retain 97.53% of the variance.

If Σ′ is Σ but with the smallest two replaced by zero then our simpler matrix
is:

A′ = UΣ′V T =


1.163 1.728 2.755 −0.006 5.214 1.916
3.618 3.171 −0.361 1.829 2.643 4.425
5.335 3.419 0.310 2.007 0.579 −0.262
6.012 4.081 1.771 1.924 2.428 −0.632
5.172 4.147 0.425 2.202 3.269 3.564


Notice that this matrix is fairly close to the original A.

9.5 Data Modeling and Prediction

Consider the following matrix where each column is considered a point in R3:

A =

 1 15 23 28 3 17 14 0 10 4
4 26 48 33 6 38 36 0 22 8

10 98 142 191 21 111 91 2 62 25


If we find the singular value decomposition of this we get:

A =

 −0.15 0.02 0.99
−0.26 0.96 −0.06
−0.95 −0.27 −0.14


︸ ︷︷ ︸

U

 317.49 0 0 0 0 0 0 0 0 0
0 24.88 0 0 0 0 0 0 0 0
0 0 1.26 0 0 0 0 0 0 0


︸ ︷︷ ︸

Σ

V T
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Notice that u1 captures

317.492

317.492 + 24.882 + 1.262
= 0.9938790675 = 99.38790675%

of all variance. This means the data is essentially one dimensional. More specif-
ically it means that the data is basically spanned by ū1 and so all of the data
more or less looks like

c1ū1 = c1

 −0.1459
−0.2604
−0.9544


for various values of c1.

So now suppose we know y = 100 and we wish to know x and z. We solve
−0.2604c1 = 100 to get c1 = −384.0246 and then calculate

−384.0246ū1 ≈

 56.0483
99.9895

366.5182


So that x ≈ 56.0483 and z ≈ 366.5182.

9.6 Centering Comment

In the real world if data is analyzed this way usually the first step is to center
it around the origin by subtracting the average of all columns of A from each
column of A. This is because, if the data is not centered around the origin in a
particularly nasty way, the vectors in U don’t really make sense for the data.

We are completely ignoring that in order to avoid an extra step and to keep the
values in A nice, as mostly the data we are using is already essentially around
the origin in all the examples. There is one homework question which steps
through the analysis with the centering process.

Example 9.6. The points in this matrix:

A =

[
−5 −4 −3 −2 −1 0 1 2 3 4 5

5 4 5 5 4 5 5 4 5 5 4

]
When plotted look like this:
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The singular value decomposition has:

A =

[
−0.0155 1.0

1.0 0.0155

] [
15.5 0 0 0 0 0 0 0 0 0 0

0 10.5 0 0 0 0 0 0 0 0 0

]
V T

These vectors don’t make intuitive sense at all for the data.

If we center the data, subtracting the average of all points[
0

4.6364

]
from each point, we get the centered data:

[
−5.0 −4.0 −3.0 −2.0 −1.0 0 1.0 2.0 3.0 4.0 5.0
0.364 −0.636 0.364 0.364 −0.636 0.364 0.364 −0.636 0.364 0.364 −0.636

]
Which, when plotted, looks like:

The singular value decomposition now has:

A =

[
−1.0 0.0186

0.0186 1.0

] [
10.5 0 0 0 0 0 0 0 0 0 0

0 1.58 0 0 0 0 0 0 0 0 0

]
V T

which makes much more sense if we think of these vectors centered at the center
of the data.
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9.7 Matlab

Throwing out a singular value and recalculating is easy too:

>> A=[

1 2 0

3 1 4

1 1 -1

0 1 2

]

A =

1 2 0

3 1 4

1 1 -1

0 1 2

>> [U,S,V] = svd(A)

U =

-0.2079 0.7246 -0.3584 -0.5507

-0.9171 -0.1139 0.3788 -0.0501

-0.0103 0.6615 0.2666 0.7009

-0.3400 -0.1560 -0.8106 0.4506

S =

5.5200 0 0

0 2.5538 0

0 0 1.4170

0 0 0

V =

-0.5380 0.4090 0.7371

-0.3049 0.7208 -0.6225

-0.7859 -0.5596 -0.2631

>> SP=S;SP(3,3)=0;

>> U*SP*transpose(V)

ans =

1.3743 1.6839 -0.1336

2.6044 1.3341 4.1412

0.7216 1.2351 -0.9006

0.8466 0.2851 1.6979

9.8 Exercises

Exercise 9.1. Find the (vector) direction in which the following set of points
have the most variance, then plot the points and the corresponding line.

(1, 2), (4, 3), (−1,−3), (−5,−8)
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Exercise 9.2. Find the (vector) direction in which the following set of points
have the most variance, then plot the points and the corresponding line.

(1,−1), (3,−2), (6,−4), (10,−4)

Exercise 9.3. For each of the following matrices find the SVD and identify the
direction in which the column data is most spread out, as well as the variance
and proportion of total variance in that direction.

(a) A =

 5.0 6.0 5.0 5.0 6.0
6.0 5.0 5.0 6.0 5.0
5.0 6.0 5.0 6.0 5.0



(b) A =


0 1.0 1.0 2.0 2.0

1.0 2.0 2.0 0 1.0
7.0 8.0 8.0 8.0 9.0
8.0 9.0 9.0 8.0 7.0
7.0 7.0 7.0 9.0 7.0



(c) A =


4.0 5.0 0 0 0
5.0 5.0 0 0 0

0 1.0 7.0 8.0 8.0
0 0 8.0 7.0 7.0



(d) A =


2.0 3.0 0 0 0 0

0 0 1.0 0 0 0
3.0 3.0 0 0 0 0

0 0 5.0 5.0 5.0 5.0


Exercise 9.4. Given the matrix

A =


2.0 3.0 0 0 0 0

0 0 1.0 0 0 0
3.0 3.0 0 0 0 0

0 0 5.0 5.0 5.0 5.0


(a) Find the singular value decomposition of A.

(b) Find an approximation A′ to A preserving the largest two singular values
only. What proportion of the total variance is preserved?

Exercise 9.5. Given the matrix

A =


1 2 −1 0 5
0 1 1 −1 6
−1 0 −2 1 4

2 2 1 2 −5
2 1 0 0 −5


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(a) Find the singular value decomposition of A.

(b) Find an approximation A′ to A preserving the largest three singular values
only. What proportion of the total variance is preserved?

Exercise 9.6. Find an approximation to the following matrix which preserves
at least 95% of the total variance using as few singular values as possible:

A =



1 0 1 1 0 1 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 1 0 1 1 1 1
0 1 0 1 0 1 0
1 0 1 1 1 0 1


Exercise 9.7. Consider the points stored in the columns of this matrix:

 2.0 −0.1 5.9 2.3 2.9 −5.1 1.9 3.6
3.2 4.8 −2.2 5.5 0.9 −1.7 3.0 3.6

17.0 13.0 1.5 21.0 3.7 −18.0 15.0 15.0


These points mostly lie close to a plane through the origin.

(a) Find the equation of this plane by finding the two directions with the most
variance, finding a normal vector for the plane, then finding the equation.

(b) Using this equation predict which z-value would correspond to x = 10 and
y = −3.

Exercise 9.8. Consider the points stored in the columns of this matrix:

 1.9 0.9 2.6 6.1 3.4 −0.5 4.5 6.0
5.3 11.0 3.9 7.0 8.2 9.2 12.0 2.6
−0.5 1.6 −1.6 −13.0 −10.0 3.3 −18.0 −8.8


These points mostly lie close to a plane but not through the origin.

(a) Find the mean of all the points. This is basically where all the points are
centered.

(b) Center the points around the origin by subtracting this mean from each
point.

15



(c) Find the two directions with the most variance and use these to find a
normal vector for the plane.

(d) Find the equation of the plane using this normal vector and also the mean.

(e) Using this equation predict x so that (x, 1,−2) is on the plane, predict y so
that (0, y, 10) is on the plane, and predict z so that (3, 4, z) is on the plane.

Exercise 9.9. Suppose n points are placed as columns in a 2 × n matrix. If
A = UΣV T is the SVD and if the points are plotted below, say as much as you
can about the matrices U and Σ

(a) n = 10 points: (b) n = 100 points:

(c) n = 50 points: (d) n = 20 points:

Exercise 9.10. Suppose a 100 × 100 matrix has 100 singular values whose
squares add to 9512 and in decreasing order are {82.2, 27.6, 23.3, 19.1, 16.3, 8.5, 5.3, ...}.
How many singular values must be preserved in order to keep 90% of the data
variance? How about 80%?

Exercise 9.11. Explain the mathematical process by which you would approx-
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imate a 200× 200 matrix while keeping 99% of the variance.
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