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8.1 Introduction

Factoring a matrix means writing the matrix as a product of other matrices.
For example if we have a matrix A and we manage to write it as A = BC for
some B and C then we’ve factored it into a product of two other matrices.

There are many ways to factor a matrix and many of them are extremely useful.
For example if a matrix A is diagonalizable then we can write the matrix as
A = PDP−1. This is useful because the entries in D are the eigenvalues and
the columns of P are the eigenvectors.

Another really useful factorization of a matrix is the singular value decompo-
sition which is a way of factoring a matrix which is used in areas like data
compression, matrix approximation, pseudoinverses, signal analysis, handwrit-
ing and facial recognition, the list goes on.

In this chapter we define the singular value decomposition and see what math-
ematical properties it has.

8.2 Definitions

Definition 8.2.0.1. For any m× n real matrix A the singular value decompo-
sition (SVD) of A is a factorization of A as:

A = UΣV T

where:

• U is an m×m orthogonal matrix.

• Σ is an m × n rectangular diagonal matrix with the diagonal entries
σ1, ..., σmin(m,n) all nonnegative and in nonincreasing order. These last
requirements aren’t strictly necessary for the definition but they are com-
monly applied and the discussion is easier if we assume it.

• V is an n× n orthogonal matrix.

Just to be sure everything’s clear, here are some auxilliary definitions:

Definition 8.2.0.2. An n × n matrix U is orthogonal if its columns are unit
vectors all perpendicular to one another. This is equivalent to saying that the
columns form an orthonormal basis of Rn and is equivalent to having UUT =
UTU = I.

Definition 8.2.0.3. An m×n rectangular diagonal matrix (which may or may
not be square) is a matrix in which the only nonzero entries can be in the (1, 1),
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(2, 2), ... positions. If there happen to be more rows than columns then the
additional rows are all zeros and likewise if there are more columns than rows.

8.3 Constructing the SVD

In applications we’ll use technology to find the SVD but it’s worth stepping
through some of the details to fully understand what’s going on in the back-
ground.

Several observations will allow us to see how the SVD may be easily constructed.

8.3.1 Observation 1

First observe that if k ≤ min(m,n) of the σi are nonzero then the product UΣ
(and hence UΣV T ) depends only on the first k columns of U and the product
ΣV T (and hence UΣV T ) depends only on the first k columns on V . These
follow from the definition of matrix multiplication.

Second observe that piggybacking off this we have:

A = UΣV T ⇐⇒ UTA = UTUΣV T ⇐⇒ UTA = ΣV T ⇐⇒ ATU = V ΣT

⇐⇒ ∀1 ≤ i ≤ k, AT ūi = σiv̄i

and that:
A = UΣV T ⇐⇒ AV = UΣV TV ⇐⇒ AV = UΣ

⇐⇒ ∀1 ≤ i ≤ k, Av̄i = σiūi

Consequently if we can find some k ≤ min(m,n) along with orthonormal ū1, ..., ūk
and orthonormal v̄1, ..., v̄k satisfying AT ūi = σiv̄i and Av̄i = σiūi then we can
assign Σ and fill out U and V as to be orthogonal and we are done.

8.3.2 Observation 2

Let’s look at the two matrices AAT and ATA.

First, note that the matrix AAT is m ×m and is symmetric (this is obvious)
and by the Spectral Theorem (proof omitted) has m eigenvalues (counting mul-
tiplicity) and m orthogonal unit eigenvectors. The same is true for ATA with
n instead of m.

Second, note that the eigenvalues for AAT and for ATA are all nonnegative. To
see this note that if (λ, v̄) is an eigenpair for ATA with v̄ a unit vector then

||Av̄||2 = (Av̄)TAv̄ = v̄TATAv̄ = v̄Tλv̄ = ||v̄||2λ = λ

A similar argument holds for AAT . Thus the eigenvalues can be written as
squares of positive real numbers.
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Third, note that we have a bijection between the eigenpairs of AAT and ATA
corresponding to nonzero eigenvalues and using unit eigenvectors. This bijection
is given by:

φ : Eigenpairs of AAT → Eigenpairs of ATA

(σ2, ū) 7→
(
σ2,

1

σ
AT ū

)

with inverse:

ψ : Eigenpairs of ATA→ Eigenpairs of AAT

(σ2, v̄) 7→
(
σ2,

1

σ
Av̄

)

Straightforward calculations show that both φ and ψ actually map eigenpairs
to eigenpairs, that they are inverses, and that both map unit eigenvectors to
unit eigenvectors.

Definition 8.3.2.1. The eigenvectors of AAT are called the left singular vectors
of A and The eigenvectors of AAT are called the right singular vectors of A .

8.3.3 Observation 3

We now know that the for the j eigenvalues which are positive (nonzero) and
common to AAT and ATA that the eigenpairs may be grouped.

(σ2
1 , ū1, v̄1), ..., (σ2

k, ūj , v̄j)

such that for each triplet we have:

v̄i = 1
σi
AT ūi and ūi = 1

σi
Av̄i

which is equivalent to:

AT ūi = σiv̄i and Av̄i = σiūi

This is precisely what was needed to satisfy A = UΣV T with k = j.

8.3.4 Construction in Brief

The practical result here is that we can construct the SVD as follows:
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1. Find the positive (nonzero) eigenvalues for AAT and ATA. These eigen-
values will be shared (we can check either). Denote these σ2

i for 1 ≤ i ≤
min(m,n).

2. For each eigenvalue σ2
i , find a unit eigenvector ūi ∈ Rm of AAT and a

unit eigenvector v̄i ∈ Rn of ATA satisfying AT ūi = σiv̄i and Av̄i = σiūi.
Multiplicity must be taken into account here; that is, if σ2

i is repeated
then we must choose multiple ūi to span the eigenspace. We can if we
wish just find the ūi and assign the v̄i.

3. Construct the matrix Σ using the σi and construct the matrices U and
V using the ūi and v̄i respectively in the corresponding order as the σi.
Fill out U and V to be orthogonal if necessary. We can do this using
remaining unit eigenvectors (corresponding to the eigenvalue 0) of AAT

or ATA respectively.

Again - in practice we will let technology do this but it’s worth stepping through
one example:

Example 8.1. For example if

A =

[
1 2 0
0 1 −1

]
Since A is 2× 3 we know U will be 2× 2, Σ will be 2× 3, and V will be 3× 3.

We calculate:

AAT =

[
5 2
2 2

]
which has eigenvalues {6, 1} and we calculate:

ATA =

 1 2 0
2 5 −1
0 −1 1


which has eigenvalues {6, 1, 0}

The shared eigenvalues are {σ2
1 , σ

2
2} = {6, 1} and so the singular values are

{σ1, σ2} =
{√

6,
√

1
}

= {2.4495, 1}.

This tells us that

Σ =

[
2.4495 0 0

0 1 0

]
To find U and V we examine the common eigenvalues.
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For the eigenvalue σ2
1 = 6 we find a unit eigenvector of AAT :

ū1 =

[
−0.8944
−0.4472

]
and we find a unit eigenvector of ATA:

v̄1 =

 −0.3651
−0.9129

0.1826


Observe that AT ū1 = σ1v̄1 and Av̄1 = σ1ū1.

For the eigenvalue σ2
2 = 1 we find a unit eigenvector of AAT :

ū2 =

[
0.4472
−0.8944

]
and we find a unit eigenvector of ATA:

v̄2 =

 −0.4472
0

−0.8944


Observe that AT ū2 = σ2v̄2 and Av̄2 = σ2ū2.

So far then we have:

[
1 2 0
0 1 −1

]
=

[
−0.8944 −0.4472
−0.4472 0.8944

]
︸ ︷︷ ︸

U

[
2.4495 0 0

0 1 0

]
︸ ︷︷ ︸

Σ

 −0.3651 −0.4472 ?
−0.9129 0 ?

0.1826 −0.8944 ?

T
︸ ︷︷ ︸

V T

We need to fill in V . We can do this by observing that ATA also had the
eigenpair:

0,

 0.8165
−0.4082
−0.4082


Thus we have:
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[
1 2 0
0 1 −1

]
=

[
−0.8944 −0.4472
−0.4472 0.8944

]
︸ ︷︷ ︸

U

[
2.4495 0 0

0 1 0

]
︸ ︷︷ ︸

Σ

 −0.3651 −0.4472 0.8165
−0.9129 0 −0.4082

0.1826 −0.8944 −0.4082

T
︸ ︷︷ ︸

V T

Example 8.2. For example if

A =


1 3
0 2
1 1
−1 2


Since A is 4× 2 we know U will be 4× 4, Σ will be 4× 2, and V will be 2× 2.

We calculate:

AAT =


10 6 4 5
6 4 2 4
4 2 2 1
5 4 1 5


which has eigenvalues {18.2621, 2.7379, 0} where the 0 has multiplicity 2 and we
calculate:

ATA =

[
3 2
2 18

]
which has eigenvalues {18.2621, 2.7379}.

The shared eigenvalues are {σ2
1 , σ

2
2} = {18.2621, 2.7379}. and so the singular

values are {
√

18.2621,
√

2.7379} = {4.2734, 1.6547}.

This tells us that:

Σ =


4.2734 0

0 1.6547
0 0
0 0


To find U and V we examine the common eigenvalues.

For the eigenvalue σ2
1 = 18.2621 we find a unit eigenvector of AAT :

ū1 =


−0.7265
−0.4640
−0.2624
−0.4336


7



and we find a unit eigenvector of ATA:

v̄1 =

[
−0.1299
−0.9915

]
Observe that AT ū1 = σ1v̄1 and Av̄1 = σ1ū1.

For the eigenvalue σ2
1 = 2.7379 we find a unit eigenvector of AAT :

ū2 =


0.3637
−0.1571

0.5207
−0.7563


and we find a unit eigenvector of ATA:

v̄2 =

[
0.9915
−0.1299

]
Observe that AT ū2 = σ2v̄2 and Av̄2 = σ2ū2.

At this point we only have two out of four necessary columns for U . The final
two columns can be filled in using eigenvectors for the eigenvalue 0, by the
Spectral Theorem there are two and they form an orthonormal set along with
ū1 and ū2.

We have:

ū3 =


−0.5284

0.1276
0.7957
0.2672

 and ū4 =


0.2465
−0.8624

0.1641
0.4106


Note that we could have reversed the assignment of these, it does not matter.

Thus we have:


1 3
0 2
1 1
−1 2

 =


−0.7265 0.3637 −0.5284 0.2465
−0.4640 −0.1571 0.1276 −0.8624
−0.2624 0.5207 0.7957 0.1641
−0.4336 −0.7563 0.2672 0.4106


︸ ︷︷ ︸

U
4.2734 0

0 1.6547
0 0
0 0


︸ ︷︷ ︸

Σ

[
−0.1299 0.9915
−0.9915 −0.1299

]T
︸ ︷︷ ︸

V T
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8.4 Matlab

Calculations of the Singular Value Decomposition can be easily done in Matlab:

>> A=[

1 2 0

3 1 4

1 1 -1

0 1 2

]

A =

1 2 0

3 1 4

1 1 -1

0 1 2

>> [U,S,V] = svd(A)

U =

-0.2079 0.7246 -0.3584 -0.5507

-0.9171 -0.1139 0.3788 -0.0501

-0.0103 0.6615 0.2666 0.7009

-0.3400 -0.1560 -0.8106 0.4506

S =

5.5200 0 0

0 2.5538 0

0 0 1.4170

0 0 0

V =

-0.5380 0.4090 0.7371

-0.3049 0.7208 -0.6225

-0.7859 -0.5596 -0.2631

8.5 Exercises

Exercise 8.1. Find the singular value decomposition of each of the following
matrices. First do this by computing both AAT and ATA, finding the eigen-
value/eigenvector pairs of each, finding the corresponding singular values, and
putting the results together. Then check your answer via technology.

(a) A =


1.0 2.0 −3.0

0 1.0 1.0
1.0 2.0 5.0
−1.0 0 2.0


(b) A =

 −1.0 0 2.0 2.0 2.0
0 2.0 3.0 0 1.0

1.0 2.0 −2.0 1.0 2.0


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(c) A =


1.0 2.0 −3.0

0 1.0 1.0
1.0 2.0 5.0
−1.0 0 2.0



(d) A =


0.1 0.2 0.9 0.3
0.9 0.2 0 0.2
0.2 0.2 0.3 0.1

0 0.3 0.7 0.6



10


	Introduction
	Definitions
	Constructing the SVD
	Observation 1
	Observation 2
	Observation 3
	Construction in Brief

	Matlab
	Exercises

