1. Questions (a) and (b) are independent of one another.

(a) Write down the Google Pagerank matrix corresponding to the following internet. You can leave the matrix in expanded form. [10 pts]

(b) Suppose the 85/15 split for Google Pagerank were replaced by the following rule: If a page has outbound links then there is a 100% chance it will follow one of them at random. If a page has no outbound links it will jump randomly to some other page. Give an example of a nontrivial internet (it must have a few pages with at least a few links) for which the Pagerank would turn out to be 0 and explain why this would be the case. No complicated calculations are required if you justify in a quantitative manner. [10 pts]

2. Consider the following plot of 100 points. Assume the axis scale is 1 : 1.

Suppose that these points are placed together in a matrix M with each point stored as a column and then the singular value decomposition is performed $M = U\Sigma V^T$.

(a) What are the dimensions of U, Σ and V? [5 pts]

(b) Give a reasonable approximation for the first column of U. Justify. [5 pts]

(c) Give a reasonable approximation for the second column of U. Justify. [5 pts]

(d) There are two singular values. How would they compare to one another? Justify. [5 pts]

(e) Suppose you remove the smaller of the two singular values to get Σ' and then recalculated $U\Sigma'V^T$. Treating each column as a point, draw a reasonable sketch of of the resulting points. Note: You don’t need to draw 100 points, just give the basic idea. [5 pts]

(f) Suppose you remove the larger of the two singular values to get Σ' and then recalculated $U\Sigma'V^T$. Treating each column as a point, draw a reasonable sketch of of the resulting points. Note: You don’t need to draw 100 points, just give the basic idea. [5 pts]
3. Questions (a) and (b) are independent of one another.

(a) Suppose you have ten samples of the letter Q, each having resolution 16×16. Explain the process by which you would create a character basis matrix B_Q for this letter using the two most significant singular values. [10 pts]

(b) Suppose your alphabet has two characters with resolution 2×2 for which you have calculated two character basis matrices as follows. These are approximated to one digit for simplicity.

$$B_1 = \begin{bmatrix} 0.7 & -0.6 \\ 0.4 & 0.6 \\ 0.1 & 0.4 \\ 0.6 & 0.3 \end{bmatrix} \quad \text{and} \quad B_2 = \begin{bmatrix} 0.1 & 0.7 \\ 0.8 & -0.1 \\ 0.1 & 0.7 \\ 0.6 & 0 \end{bmatrix}$$

Categorize the letter whose image has matrix:

$$\begin{bmatrix} 0.1 & 0.8 \\ 0.0 & 0.7 \end{bmatrix}$$

Note: There is a bunch of calculation involved. It’s all pretty manageable but you can earn most of the credit just by explaining what you would do.

4. Suppose a 100×100 image has singular values $s_1 \geq s_2 \geq ... \geq s_{100}$. The answers to the following will have s_i in them since there are no actual values.

(a) How much image variance would be preserved if the image were compressed using only the largest ten singular values? [5 pts]

(b) Explain how you would calculate the minimum number of singular values necessary to preserve 99.9% of the image variance. [5 pts]

5. The following graph has Fielder vector given on the right:

(a) Use this vector to partition the graph into two subgraphs. You don’t need to draw any graphs, just explain which vertices go in which subgraphs. [5 pts]

(b) Use this vector to partition the graph into four subgraphs and use these subgraphs to draw a more reasonable picture of the graph. There’s some wiggle room for where you choose to partition so make sure you justify whichever choices you make. [10 pts]
6. Suppose you obtained the key fragment \(x_1, x_2, \ldots, x_{30} \) for a linearly recursively defined key.

 (a) If you found \(\det(M_m) \) for \(m = 1, 2, \ldots, 10 \) to be 0, 1, 1, 0, 0, 1, 0, 0, 0, 0 which value of \(m \) would you expect to be the key length? Why? \[5 \text{ pts}\]

 (b) Which corresponding matrix equation would you solve? This will have \(x_i \) in it! \[5 \text{ pts}\]

 (c) Suppose that this \(m \) did not work and you needed to calculate more determinants. What is the largest \(m \) you could calculate given the length of your key fragment? Explain. \[5 \text{ pts}\]

7. Suppose the covariance matrix associated to two stocks is given by:

\[
\begin{bmatrix}
0.040 & 0.002 \\
0.002 & 0.025
\end{bmatrix}
\]

Suppose the average returns of the stocks are \(\mu_1 = 0.01 \) and \(\mu_2 = 0.05 \) and suppose you allocate your portfolio with proportions \(x_1 \) in Stock 1 and \(x_2 \) in Stock 2.

 (a) Which matrix equation would you solve to find the global minimum variance portfolio? \[5 \text{ pts}\]

 (b) If your desired return is \(\mu = 0.025 \) which matrix equation would you solve to find the associated minimum variance portfolio? \[10 \text{ pts}\]

 (c) For an unknown desired return \(\mu \) the solution to the associated minimum variance portfolio matrix equation is given by:

\[
\begin{bmatrix}
1.25 - 25\mu \\
25\mu - 0.25 \\
2.725 - 76.25\mu \\
2.6625\mu - 0.1256
\end{bmatrix}
\]

For which values of \(\mu \) would you not have to short either stock?