Math 403 Exam 1 Sample 2 Hints

1. Use the Cayley table shown to answer the following:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>A</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>F</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>E</td>
<td>A</td>
<td>C</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td>D</td>
<td>A</td>
</tr>
</tbody>
</table>

(a) Find and justify the identity element.
Solution: Which element \(e \) satisfies \(ey = ye = y \) for all other \(y \)?

(b) Find \(D^{-1} \).
Solution: Which element \(x \) satisfies \(xD = Dx = e \)?

(c) Is the group Abelian? Justify.
Solution: Can you find any \(x, y \) with \(xy \neq yx \)?

(d) Find and justify an element of order 3.
Solution: Find an \(x \) with \(x \neq e \), \(x^2 \neq e \) but \(x^3 = e \).

2. Classify each of the following as a group or not a group.

- For each which is a group give the identity and give an example of a nonidentity element and its inverse.
- For each which is not a group give an example of a single requirement which fails.

(a) \(\{1, 2, 3, 4, 5\}, \cdot \mod 6 \)
Solution: Not a group, there’s an element with no inverse.

(b) \((\mathbb{R}^+, \cdot) \)
Solution: Not a group, the operation is not associative.

(c) \((GL_2\mathbb{Q}, \cdot) \)
Solution: Group.

3. For each of the following, give \(\langle g \rangle \) for all \(g \in G \). Then determine if each group is cyclic and if so list all the generators.

(a) \(\mathbb{Z}_8 \)
Solution: List not give. Cyclic.

(b) \(U(14) \)
Solution: List not given. Cyclic.

4. Suppose \(G \) is cyclic with \(|G| = 36 \) and generator \(g \in G \).

(a) Find all subgroups of \(G \).
Solution: Use the Fundamental Theorem of Cyclic Groups. There’s one for each divisor.

(b) Find all generators of \(G \).
Solution: Generators are \(g^k \) with \(\gcd(36, k) = 1 \).

(c) What can you say about the number of elements of order 10 in \(G \)?
Solution: It’s \(\phi(10) \).

5. Prove that \((\mathbb{R}^*, \cdot) \) is not cyclic.
Solution: Pick a non-identity element and examine its powers. Argue based on what you find.

6. Use the One-Step Subgroup Test to show that \(Z(G) \) is a subgroup of \(G \).
Solution: Straightforward.
7. (a) Suppose \(x, y \in G \) with \(xy \in Z(G) \). Show \(xy = yx \).
 Solution: Since \(xy \in Z(G) \) we have \(xy = yy^{-1}(xy) = y(xy)y^{-1} = yx \).

(b) Show that if \(|G| \) is even then \(G \) contains a nonidentity element of order 2.
 Solution: An element \(g \neq e \) satisfies \(g^2 = e \) iff \(g = g^{-1} \). Assume \(G \) has no elements of order 2. Then no element in \(G \) is its own inverse except for \(e \). This means nonidentity elements can be paired up with their inverses. However there are an odd number of nonidentity elements. This is a contradiction.

8. Suppose that \(G \) is Abelian and \(a, b \in G \) with \(|a| = |b| = 2 \). Show that \(G \) has a subgroup of order 4. Don’t just give the elements, justify the requirements for being a group.
 Solution: The elements are \(\{e, a, b, ab\} \). A Cayley table suffices.

9. Suppose some \(g \in G \) has the same order as all of its positive powers. Find \(g \). Justify.
 Solution: For all \(k \in \mathbb{Z}^+ \) we have \(|g| = |g^k| = |g|/\gcd(|g|, k) \) and so \(\gcd(|g|, k) = 1 \) for all such \(k \). Thus \(|g| = 1 \) and so \(g = e \).

10. Show that a group of order 4 must be Abelian.
 Solution: Put \(G = \{e, a, b, c\} \). Look at various possibilities of what happens when you combine elements. For example what could \(ab \) be? This can be a bit icky.

11. Two of the following are homomorphisms and two are not. Provide proof.

 (a) \(\phi : \mathbb{Z} \to \mathbb{Z} \) given by \(\phi(x) = 2x \).
 Solution: Homomorphism.

 (b) \(\phi : \mathbb{Z} \to \mathbb{Z}_5 \) given by \(\phi(x) = x + 1 \mod 5 \).
 Solution: Not a homomorphism.

 (c) \(\phi : \mathbb{R} \to \mathbb{C}^* \) given by \(\phi(x) = \cos x + i \sin x \).
 Solution: Homomorphism.

 (d) \(\phi : S_4 \to A_4 \) given by \(\phi(\alpha) = \begin{cases}
 \alpha & \text{if } \alpha \in A_4 \\
 (12)\alpha & \text{if } \alpha \notin A_4
 \end{cases} \)
 Solution: Not a homomorphism.