MATH 403: Homework 10 (Chapter 21) Partial Solutions

1. Let E be a field extension of F and suppose $\alpha \in E$ is algebraic over F. Prove that α is a root of a unique irreducible monic polynomial in $F[x]$.

 Solution: This is corollary 3(c) in the Chapter 21 notes.

2. Find the degree and a basis for $Q(\sqrt[3]{3} + \sqrt[5]{5})$ over $Q(\sqrt{15})$.

 Solution: First note that $Q(\sqrt[3]{3} + \sqrt[5]{5}) = Q(\sqrt[3]{3}, \sqrt[5]{5})$ by a similar proof to HW9#6. Therefore every element in $Q(\sqrt[3]{3} + \sqrt[5]{5})$ has the form:

 \[a + b\sqrt[3]{3} + c\sqrt[5]{5} + d\sqrt{15} = (a + d\sqrt{15})(1) + \left(b + c\frac{\sqrt{15}}{3}\right)(\sqrt[3]{3}) \]

 and thus a basis is \{1, $\sqrt[3]{3}$\} and the degree is 2.

3. For two subfields $F_1 \subseteq F$ and $F_2 \subseteq F$ define the composite field F_1F_2 to be the smallest subfield of F containing both F_1 and F_2.

 (a) Show by example that F_1F_2 is not necessarily the same as $F_1 \cap F_2$.

 Solution: For example $R \subseteq \mathbb{R}$ and $Q \subseteq \mathbb{R}$ but $R \cap Q = Q$ and $RQ = \mathbb{R}$.

 (b) Show that $Q(\sqrt{2})Q(\sqrt[3]{3}) = Q(\sqrt{2}, \sqrt[3]{3})$.

 Solution: First observe that:

 \[Q(\sqrt{2})Q(\sqrt[3]{3}) = Q(\sqrt{2}, \sqrt[3]{3}) \]

 since both the result of the the same process, thus we only need to show that:

 \[Q(\sqrt{2}, \sqrt[3]{3}) = Q(\sqrt[3]{3}) \]

 Since $\sqrt{2}$ is a root $x^2 - 2$ which is irreducible over Q and $\sqrt[3]{3}$ is a root of $x^3 - 2$ which is irreducible over Q (by Eisenstein) an element in $Q(\sqrt{2}, \sqrt[3]{3})$ has the form:

 \[a + b\sqrt[3]{3} + c\sqrt[5]{5} + d\sqrt{15} \]

 Since we have $2^{1/2} = (2^{1/6})^3$ and $2^{1/3} = (2^{1/6})^2$ we know that every element in $Q(\sqrt{2}, \sqrt[3]{3})$ is in $Q(\sqrt[3]{3})$.

 Since $\sqrt[3]{3}$ is a root of $x^6 - 2$ which is irreducible over Q (by Eisenstein) en element in $Q(\sqrt[3]{3})$ has the form:

 \[a + b\sqrt[1/2]{3} + c\sqrt[2/3]{2} + d\sqrt[3/6]{3} + e\sqrt[4/6]{4} + f\sqrt[5/6]{5} \]

 Since we have $2^{1/6} = 2^{1/2}/2^{1/3}$ we know that every element in $Q(\sqrt[3]{3})$ is in $Q(\sqrt[3]{3}, \sqrt[3]{3})$.

4. Find the minimal polynomial for $\sqrt[3]{2} + \sqrt[5]{5}$ over Q. Justify why it’s minimal.

 Solution: We can find the polynomial via:

 \[x = \sqrt[3]{2} + \sqrt[5]{5} \]

 \[x^3 = \left(\sqrt[3]{2} + \sqrt[5]{5}\right)^3 \]

 \[x^3 = 2 + 3 \cdot 2^{2/3} \cdot 5^{1/3} + 3 \cdot 2^{1/3} \cdot 5^{2/3} + 5 \]

 \[x^3 = 7 + 3 \cdot 2^{1/3} \cdot 5^{1/3} \left(2^{1/3} + 5^{1/3}\right) \]

 \[x^3 - 7 = 3 \cdot 2^{1/3} \cdot 5^{1/3} x \]

 \[(x^3 - 7)^3 = 3^3 \cdot 2^{1/3} \cdot 5^{1/3} x \]

 \[x^9 - 21x^6 + 147x^3 - 343 = 27(2)(5)x^3 \]

 \[x^9 - 21x^6 - 123x^3 - 343 = 0 \]

 I deleted the justification for why it’s minimal.
5. Find and justify \(\left[\mathbb{Q} \left(\sqrt{2} + \sqrt{3} \right) : \mathbb{Q} \right] \).

Solution: We can find the polynomial via:
\[
\begin{align*}
x &= \sqrt{2} + \sqrt{3} \\
x^2 &= 2 + \sqrt{3} \\
x^2 - 2 &= \sqrt{3} \\
x^4 - 4x^2 + 4 &= 3 \\
x^4 - 4x^2 + 1 &= 0
\end{align*}
\]

6. If \(\alpha, \beta \in \mathbb{R} \) are transcendental over \(\mathbb{Q} \) prove that at least one of \(\alpha \beta \) and \(\alpha + \beta \) is also transcendental over \(\mathbb{Q} \).

Solution: Let \(K \) consist of all the elements in \(\mathbb{C} \) which are algebraic over \(\mathbb{Q} \).
Assume both \(\alpha \beta \) and \(\alpha + \beta \) are algebraic over \(\mathbb{Q} \) and consider that \(\alpha \) and \(\beta \) are roots of the polynomial
\[
(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha \beta \in K[x]
\]
Thus \(\alpha \) and \(\beta \) are algebraic over \(K \) and hence since \(K \) is algebraic over \(\mathbb{Q} \) both \(\alpha \) and \(\beta \) are algebraic over \(\mathbb{Q} \), a contradiction.

Definition for Questions 7,8: A field \(F \) is **algebraically closed** if every nonconstant polynomial in \(F[x] \) has a root in \(F \).

7. Prove that if \(F \) is finite then \(F \) is not algebraically closed.

Solution: If we have \(F = \{a_1, \ldots, a_n\} \) then consider that the polynomial \((x - a_1)(x - a_2) \ldots (x - a_n) + 1 \in F[x] \) but has no roots in \(F \).

8. It’s true that \(\mathbb{C} \) is algebraically closed. Given this fact, show that if \(E \) is a finite extension of \(\mathbb{R} \) then \(E \approx \mathbb{C} \) or \(E \approx \mathbb{R} \).

Solution: Deleted. Do not grade.