3. Find the smallest \(n \) such that \(U(n) \) is not cyclic. You don’t need to prove it’s the smallest but you do need to prove it’s not cyclic.

Proof: \(U(8) \) is not cyclic because \(U(8) = \{1, 3, 5, 7\} \) and \(|1| = 1\) and \(|3| = |5| = |7| = 2\).

5. Suppose \(G \) is a group and \(g \in G \) has \(|g^4| = 12\). What could \(|g|\) be? Prove.

Solution: Let \(n = |g|\). We know that \(12 = |g^4| = \frac{n}{\gcd(n, 4)} \). Observe that because the gcd must divide 4 we could have \(\gcd(n, 4) = 1, 2, 4 \).

If \(\gcd(n, 4) = 1 \) then the equation becomes \(12 = \frac{n}{4} \) so \(n = 12 \) but \(\gcd(12, 4) \neq 1 \), a contradiction.

If \(\gcd(n, 4) = 2 \) then the equation becomes \(12 = \frac{n}{2} \) so \(n = 24 \) but \(\gcd(24, 4) \neq 2 \), a contradiction.

If \(\gcd(n, 4) = 4 \) then the equation becomes \(12 = \frac{n}{4} \) so \(n = 48 \) and \(\gcd(48, 4) = 4 \). Thus we must have \(|g| = 48\).

8. Prove that a finite group is the union of its proper subgroups if and only if the group is not cyclic.

Proof:

\(\Rightarrow \) Suppose a finite group \(G \) is the union of its proper subgroups. Assume \(G \) is cyclic and let \(g \) be a generator. Then since \(G \) is the union of its proper subgroups \(g \) must be in one of those proper subgroups. However this means that \(G = \langle g \rangle \) must be in that proper subgroup, contradicting the fact that it’s proper. Thus \(G \) is not cyclic.

\(\Leftarrow \) Suppose \(G \) is not cyclic. Then \(G \) is the union of all \(\langle a \rangle \) with \(a \in G \). Since none of these are all of \(G \) they are all proper. Note that there may be more proper subgroups but they we’ve already got all of \(G \) so they don’t contribute anything new.