1. Let $\alpha = (1365)(24)$, $\beta = (152643)$, $\gamma = (163)$. Find each of the following. For (a)-(e), write each result first as a product of disjoint cycles, then as a product of 2-cycles, then say if the element is even or odd:

(a) $\alpha \beta$
(b) $\beta \alpha$
(c) $\alpha^2 \beta \gamma^2$
(d) α^{-1}
(e) η such that $\eta \beta = (1243)(56)$
(f) $|\alpha|$

2. No proof is required for each of these, just give a brief answer:

(a) How many elements of order 5 are in A_6?
(b) Find a generator of a cyclic subgroup of A_8 which has order 4.
(c) Find an element in S_{10} with order 12.
(d) What is the smallest value of n so that S_n contains at least one element of order 18? Give the n, justify and give an example of such an element.

3. In S_5, find each of the following. You need not justify that your answers are subgroups but you should convince yourself!

(a) A cyclic subgroup of order 6. List the elements and a generator.
(b) A non-Abelian subgroup of order 6. List the elements and specify two which don’t commute.

4. Let n be an even positive integer. Prove that A_n has an element of order greater than n iff $n \geq 8$.

5. Find $Z(S_n)$ for all n. Note that $n = 1$ and $n = 2$ are different than all the others and you should account for this. This problem takes some fiddling!