1. Determine whether each of the following subsets is an ideal. For those which are, no proof is required. For those which aren’t, give explicit \(r \in R \) and \(a \in A \) with \(ra \notin A \).

(a) \(3 \mathbb{Z} \subset \mathbb{Z} \)
(b) \(\mathbb{Z} \subset \mathbb{R} \)
(c) \(\{ x^2 p(x) \mid p(x) \in \mathbb{Z}[x] \} \subset \mathbb{Z}[x] \)
(d) \(\text{GL}_2 \mathbb{R} \subset M_2 \mathbb{R} \)
(e) \(\mathbb{Z}[x] \subset \mathbb{R}[x] \)

2. For each of the following ideals and elements, determine if each element is in the ideal. Justify briefly.

(a) The ideal \(\langle x \rangle \) in the ring \(\mathbb{Z}[x] \): The elements \(3x + 1, 4x^2 - 2x \) and \(\frac{1}{2}x^2 \).
(b) The ideal \(\langle x^2 + 3 \rangle \) in the ring \(\mathbb{R}[x] \): The elements \(x^3 + 3x, x^4 - x^3 + 4x^2 - 3x + 3 \) and \(x^4 - x^2 + x - 13 \).
(c) The ideal \(\langle x, 4 \rangle \) in the ring \(\mathbb{R}[x] \): The elements \(x^2 + x \) and \(2x^2 - x + 8 \).
(d) The ideal \(\langle 5x + 6 \rangle \) in the ring \(\mathbb{Z}_7[x] \): The elements \(x^2 + x + 2 \) and \(x^2 + 1 \).

3. Consider the ring \(\mathbb{Z}[x] \) and the ideal \(\langle x^2 - 3 \rangle \).

(a) Describe the elements in \(\mathbb{Z}[x]/\langle x^2 - 3 \rangle \) as simply as possible, with justification.
(b) Calculate \((2x + 2 + \langle x^2 - 3 \rangle) + (-5x - 1 + \langle x^2 - 3 \rangle) \), simplifying the answer to the form you found in (a).
(c) Calculate \((4x - 3 + \langle x^2 - 3 \rangle) (3x - 3 + \langle x^2 - 3 \rangle) \), simplifying the answer to the form you found in (a).

4. Show that \(A = \{(3x, y) \mid x, y \in \mathbb{Z} \} \) is a maximal ideal of \(\mathbb{Z} \oplus \mathbb{Z} \). Show both that it’s an ideal and that it’s maximal.

5. (a) Show that \(\langle 2 + 2i \rangle \) is not a prime ideal of \(\mathbb{Z}[i] \). You must prove any claims you make about whether elements are in or not in the ideal.
(b) Show that \(26 \mathbb{Z} \) is a prime ideal of \(2 \mathbb{Z} \). You may assume it’s an ideal and just show it’s prime.

6. Show that \(\mathbb{R}[x]/\langle x^2 + 1 \rangle \) is a field by showing that each nonzero element is a unit.

7. Suppose \(\phi \) is a 1-1 ring homomorphism from \(\mathbb{Z} \oplus \mathbb{Z} \) to itself. What are the possibilities for \(\phi(1, 0) \)? Justify.

8. Find rings \(R \) and \(S \), an ideal \(A \) of \(R \) and a ring homomorphism \(\phi : R \to S \) such that \(\phi(A) \) is not an ideal of \(S \). You must prove that \(A \) is an ideal, that \(\phi \) is a ring homomorphism and that \(\phi(A) \) is not an ideal of \(S \).

9. (a) Show by example that \(\phi(x) : \mathbb{Z}_m \to \mathbb{Z}_n \) given by \(\phi(x) = ax \) (for \(a \in \mathbb{Z} \)) need not be a ring homomorphism.
(b) Show that \(\phi : \mathbb{Z}_5 \to \mathbb{Z}_{30} \) given by \(\phi(x) = 6x \) is a ring homomorphism.

10. Prove that \(\mathbb{C} \not\approx \mathbb{R} \) as rings.

11. Prove that \(\mathbb{Z}[\sqrt{-2}] \approx \mathbb{Z}[x]/\langle x^2 + 2 \rangle \) as rings.

12. Show that a homomorphism from a field onto a ring with more than one element must be an isomorphism.