## Math 403 Chapter 11: The Fundamental Theorem of Finite Abelian Groups

1. Introduction: The Fundamental Theorem of Finite Abelian Groups basically categorizes all finite Abelian groups.
2. Theorem: Every finite Abelian group is an external direct product $\oplus$ of cyclic groups of the form $\mathbb{Z}_{p^{\alpha}}$ for prime $p$. Moreover any two such groups are isomorphic in the sense that $\mathbb{Z}_{a} \oplus \mathbb{Z}_{b} \approx \mathbb{Z}_{a b}$ whenver $\operatorname{gcd}(a, b)=1$.
Proof: Omit.
$\mathcal{Q E D}$
3. Impliementation: To see how this allows us to list all distinct (up to isomorphism) finite Abelian groups of order $n$ :
(a) Step 1: Let's first start with order $n=p^{\alpha}$. If we partition $\alpha$ into various nonincreasing sums:

$$
\alpha=\beta_{1}+\beta_{2}+\ldots+\beta_{k} \text { with } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{k}
$$

Then each partition yields a distinct Abelian group:

$$
\mathbb{Z}_{p^{\beta_{1}}} \oplus \mathbb{Z}_{p^{\beta_{2}}} \oplus \ldots \oplus \mathbb{Z}_{p^{\beta_{k}}}
$$

Example: To find all distinct finite Abelian groups of order $16=2^{4}$ we first list all partitions of 4:

$$
\begin{aligned}
& 4 \\
& 3+1 \\
& 2+2 \\
& 2+1+1 \\
& 1+1+1+1
\end{aligned}
$$

This then yields distinct groups:

$$
\begin{array}{ll}
\mathbb{Z}_{2^{4}} & =\mathbb{Z}_{16} \\
\mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{2^{1}} & =\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \\
\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{2}} & =\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \\
\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{1}} \oplus \mathbb{Z}_{2^{1}} & =\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
\mathbb{Z}_{2^{1}} \oplus \mathbb{Z}_{2^{1}} \oplus \mathbb{Z}_{2^{1}} \oplus \mathbb{Z}_{2^{1}} & =\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{array}
$$

(b) Step 2: For $n$ which are not simply of order $n=p^{\alpha}$ we find the prime factorization of $n$ :

$$
n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}
$$

and then apply the above consequence to each $p_{i}^{\alpha^{i}}$ and then create all possible combinations of each.
Example: To find all distinct finite Abelian groups of order $72=2^{3} \cdot 3^{2}$ we first list those for $2^{3}$ using partitions $3=3=2+1=1+1$ :

$$
\begin{aligned}
& \mathbb{Z}_{8} \\
& \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{aligned}
$$

and then for $3^{2}$ using partitions $2=2=1+1$ :

$$
\begin{aligned}
& \mathbb{Z}_{9} \\
& \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
\end{aligned}
$$

Then we create all possible combinations:

$$
\begin{aligned}
& \mathbb{Z}_{8} \oplus \mathbb{Z}_{9} \\
& \mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \\
& \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9} \\
& \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
\end{aligned}
$$

(c) Example: Consider $U(13)=\{1,2,3,4,5,6,7,8,9,10,11,12\}$ with multiplication mod 13. Since $U(13)$ is Abelian and $|U(13)|=12$ we must have either $U(13) \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$ or $U(13) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. To figure out which we could try a variety of things. One option: The elements in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$ can have order $1,2,3,4,6,12$ and the elements in $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ can have order $1,2,3,6,12$. Thus if $U(13)$ has an element of order 4 then it must be isomorphic to $\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$. In fact in $U(13)$ we have $|5|=4$ and so $U(13) \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$. Interestingly since $\mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \approx \mathbb{Z}_{12}$ this also tells us that $U(13) \approx \mathbb{Z}_{12}$ which means it's cyclic.
(d) Note: There is no known closed formula for the number of partitions of a given $\alpha$. In other words if we assign $p(\alpha)$ to be the number of ways to partition $\alpha$ then we have $p(1)=1$ (because $1=1$ ), $p(2)=2$ (because $2=2=1+1$ ), $p(3)=3$ (because $3=3=2+1=1+1+1$ ), $p(4)=5$ (because $4=4=3+1=2+2=2+1+1=1+1+1+1$ ), $p(5)=7$ (because $5=5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1$ ), $p(6)=11$ (because $\ldots$ ), $p(7)=13$ (because ...), etc. but no known closed formula exists for $p(\alpha)$ in general. There are a variety of non-closed ways to calculate it, however.
4. Corollary: If $G$ is a finite Abelian group and if $m|n=|G|$ then $G$ has a subgroup of order $m$.
Proof: The proof is (interestingly) by strong induction on $n=|G|$. If $|G|=1$ the result is obvious so assume the result is true for Abelian groups of order less than $n$ and assume $m \mid n$. If $m=1$ the result is also trivial so assume $m>1$. Suppose $p$ is a prime with $p \mid m$. Then $p \mid n$ and then since $G \approx Z_{p^{\alpha}}+G^{\prime}$ for some $G^{\prime}$ and by properties of cyclic groups we know there is some $K \leq Z_{p^{\alpha}}$ with $|K|=p$. Put $K=K \oplus\{0\}$ Then $G / K$ is an Abelian group of order $n / p$. Since $m \mid n$ we know $(m / p) \mid(n / p)$ and hence by induction $G / K$ has a subgroup of order $m / p$ which has the form $H / K$ with $H \leq G\left(^{*}\right)$. Then since $|H / K|=m / p$ and $|H / K|=|H| /|K|=|H| / p$ we have $|H|=p(m / p)=m$.
$\mathcal{Q E D}$
${ }^{(*)}$ The fact that a subgroup of $G / N$ must have the form $H / N$ where $H \leq G$ is not obvious but not difficult to prove.
Example: An Abelian group of order 100 must have subgroups of orders 1,2,4,5,10,20,50 and 100.

