
Math 403 Chapter 11: The Fundamental Theorem of Finite Abelian Groups

1. Introduction: The Fundamental Theorem of Finite Abelian Groups basically categorizes all
finite Abelian groups.

2. Theorem: Every finite Abelian group is an external direct product ⊕ of cyclic groups of
the form Zpα for prime p. Moreover any two such groups are isomorphic in the sense that
Za ⊕ Zb ≈ Zab whenver gcd (a, b) = 1.

Proof: Omit. QED

3. Impliementation: To see how this allows us to list all distinct (up to isomorphism) finite
Abelian groups of order n:

(a) Step 1: Let’s first start with order n = pα. If we partition α into various nonincreasing
sums:

α = β1 + β2 + ...+ βk with β1 ≥ β2 ≥ ... ≥ βk
Then each partition yields a distinct Abelian group:

Zpβ1 ⊕ Zpβ2 ⊕ ...⊕ Zpβk

Example: To find all distinct finite Abelian groups of order 16 = 24 we first list all
partitions of 4:

4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1

This then yields distinct groups:

Z24 = Z16

Z23 ⊕ Z21 = Z8 ⊕ Z2

Z22 ⊕ Z22 = Z4 ⊕ Z4

Z22 ⊕ Z21 ⊕ Z21 = Z4 ⊕ Z2 ⊕ Z2

Z21 ⊕ Z21 ⊕ Z21 ⊕ Z21 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

(b) Step 2: For n which are not simply of order n = pα we find the prime factorization of n:

n = pα1
1 ...pαkk

and then apply the above consequence to each pα
i

i and then create all possible combina-
tions of each.

Example: To find all distinct finite Abelian groups of order 72 = 23 ·32 we first list those
for 23 using partitions 3 = 3 = 2 + 1 = 1 + 1:

Z8

Z4 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2

and then for 32 using partitions 2 = 2 = 1 + 1:



Z9

Z3 ⊕ Z3

Then we create all possible combinations:

Z8 ⊕ Z9

Z8 ⊕ Z3 ⊕ Z3

Z4 ⊕ Z2 ⊕ Z9

Z4 ⊕ Z2 ⊕ Z3 ⊕ Z3

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3

(c) Example: Consider U(13) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with multiplication mod
13. Since U(13) is Abelian and |U(13)| = 12 we must have either U(13) ≈ Z4 ⊕ Z3 or
U(13) ≈ Z2 ⊕Z2 ⊕Z3. To figure out which we could try a variety of things. One option:
The elements in Z4⊕Z3 can have order 1,2,3,4,6,12 and the elements in Z2⊕Z2⊕Z3 can
have order 1,2,3,6,12. Thus if U(13) has an element of order 4 then it must be isomorphic
to Z4 ⊕ Z3. In fact in U(13) we have |5| = 4 and so U(13) ≈ Z4 ⊕ Z3. Interestingly since
Z4 ⊕ Z3 ≈ Z12 this also tells us that U(13) ≈ Z12 which means it’s cyclic.

(d) Note: There is no known closed formula for the number of partitions of a given α. In
other words if we assign p(α) to be the number of ways to partition α then we have
p(1) = 1 (because 1 = 1), p(2) = 2 (because 2 = 2 = 1 + 1), p(3) = 3 (because
3 = 3 = 2+1 = 1+1+1), p(4) = 5 (because 4 = 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1),
p(5) = 7 (because 5 = 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1),
p(6) = 11 (because ...), p(7) = 13 (because ...), etc. but no known closed formula exists
for p(α) in general. There are a variety of non-closed ways to calculate it, however.

4. Corollary: If G is a finite Abelian group and if m | n = |G| then G has a subgroup of order
m.
Proof: The proof is (interestingly) by strong induction on n = |G|. If |G| = 1 the result
is obvious so assume the result is true for Abelian groups of order less than n and assume
m | n. If m = 1 the result is also trivial so assume m > 1. Suppose p is a prime with p | m.
Then p | n and then since G ≈ Zpα + G′ for some G′ and by properties of cyclic groups we
know there is some K ≤ Zpα with |K| = p. Put K = K ⊕ {0} Then G/K is an Abelian
group of order n/p. Since m | n we know (m/p) | (n/p) and hence by induction G/K has a
subgroup of order m/p which has the form H/K with H ≤ G (*). Then since |H/K| = m/p
and |H/K| = |H|/|K| = |H|/p we have |H| = p(m/p) = m. QED
(*) The fact that a subgroup of G/N must have the form H/N where H ≤ G is not obvious
but not difficult to prove.

Example: An Abelian group of order 100 must have subgroups of orders 1,2,4,5,10,20,50 and
100.


