Math 403 Chapter 13: Integral Domains and Fields

1. Introduction: Rings are closer to familiar structures like \mathbb{R} in that they get addition (therefore subtraction) and multiplication, but they don't necessarily get division. More generally certain standard assumptions break down. For example in \mathbb{R} we know that if $a b=0$ then $a=0$ or $b=0$ but this isn't necessarily the case in a general ring. What we'll do in this chapter is focus on certain types of ring in which behavior is a little more familiar.

2. Integral Domains:

(a) Definition: If R is a commutative ring then $a \in R$ is a zero-divisor if there is some $b \in \mathbb{R}$ with $a b=0$.
Example: In \mathbb{Z}_{10} the integer 5 is a zero-divisor because (5)(2)=0 whereas 3 is not a zero-divisor because there is no $b \in \mathbb{Z}_{10}$ with $3 b=0$.
Note: When defining a zero-divisor we requite R to be commutative to avoid issues that arise if $a b=0$ but $b a \neq 0$. This can happen in rings, for example in $M_{2} \mathbb{R}$:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { but }\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

This complicates the definition as to whether we should consider a and b to be zerodivisors.
(b) Definition: A commutative ring with a unity is an integral domain if it has no zerodivisors.
In other words a commutative ring with unity is an integral domain if, whenever $a b=0$, we must have $a=0$ or $b=0$.
Example: The following are all integral domains: $\mathbb{Z}, \mathbb{Z}_{p}$ when p is a prime, $\mathbb{R}, \mathbb{Q}, \mathbb{Z}[x]$, $\mathbb{Z}[\sqrt{2}]$
Example: The following are all not integral domains:

- \mathbb{Z}_{n} when n is not a prime, for example in \mathbb{Z}_{6} we have $(2)(3)=0$.
- $\mathbb{Z} \oplus \mathbb{Z}$, for example $(1,0)(0,1)=(0,0)$.
- $M_{2} \mathbb{Z}$ because it's not commutative to begin with.

Note: Integral domains are assumed to have unity for historical reasons. It's possible to consider rings which have no zero divisors but have no unity (like $2 \mathbb{Z}$) but these are not considered integral domains.
(c) Theorem (Cancellation): If R is an integral domain and $a, b, c \in R$ with $a \neq 0$ and $a b=a c$ then $b=c$.
Note: In groups we can do this because of inverses but here this is not the reason!
Proof: If $a b=a c$ then $a b-a c=0$ and so $a(b-c)=0$. Since $a \neq 0$ we have $b-c=0$ and so $b=c$.

3. Fields

(a) Definition: A commutative ring with unity is a field if every nonzero element is a unit. Note: Recall a unit is an element with a multiplicative inverse so this is basically saying that each nonzero element has a multiplicative inverse. In this case we have to have a unity to even begin the discussion about whether elements are units.

Example: The following are all fields: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{3}[i]=\left\{a+b i \mid a, b \in \mathbb{Z}_{3}\right.$ (not obvious)
Example: The following are all not fields: $\mathbb{Z}, \mathbb{R}[x]$
Note: As we'll see, fields are a subset of integral domains (which we know are a subset of rings).
(b) Theorem: Every field is an integral domain.

Proof: Suppose R is a field and $a, b \in R$ with $a b=0$. We claim $a=0$ or $b=0$. If $a=0$ we are done. if not then we can multiply both sides by a^{-1} and get $b=0$. $\mathcal{Q E D}$
(c) Note: The reverse is not true, we can have an integral domain which is not a field, for example \mathbb{Z}.
However we do have the following:
(d) Theorem: Every finite integral domain is a field.

Proof: Let R be a finite integral domain with unity 1 and let $a \in R$. We claim a is a unit. If $a=1$ then we are done. If $a \neq 1$ then examine $a^{1}, a^{2}, a^{3}, \ldots$. Since R is finite two of these must be equal, say $a^{i}=a^{j}$ for $i>j$. By cancellation then we have $a^{i-j}=0$ and so $a\left(a^{i-j-1}\right)=1$ and we have found the multiplicative inverse of a. $\mathcal{Q E D}$
Example: If p is a prime then \mathbb{Z}_{p} is a finite integral domain and hence is a field.

