
Math 403 Chapter 13: Integral Domains and Fields

1. Introduction: Rings are closer to familiar structures like R in that they get addition (therefore
subtraction) and multiplication, but they don’t necessarily get division. More generally certain
standard assumptions break down. For example in R we know that if ab = 0 then a = 0 or
b = 0 but this isn’t necessarily the case in a general ring. What we’ll do in this chapter is
focus on certain types of ring in which behavior is a little more familiar.

2. Integral Domains:

(a) Definition: If R is a commutative ring then a ∈ R is a zero-divisor if there is some b ∈ R
with ab = 0.

Example: In Z10 the integer 5 is a zero-divisor because (5)(2) = 0 whereas 3 is not a
zero-divisor because there is no b ∈ Z10 with 3b = 0.

Note: When defining a zero-divisor we requite R to be commutative to avoid issues that
arise if ab = 0 but ba 6= 0. This can happen in rings, for example in M2R:[

1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
but

[
0 0
1 0

] [
1 0
0 0

]
=

[
0 0
1 0

]
This complicates the definition as to whether we should consider a and b to be zero-
divisors.

(b) Definition: A commutative ring with a unity is an integral domain if it has no zero-
divisors.

In other words a commutative ring with unity is an integral domain if, whenever ab = 0,
we must have a = 0 or b = 0.

Example: The following are all integral domains: Z, Zp when p is a prime, R, Q, Z[x],
Z[
√

2]

Example: The following are all not integral domains:

• Zn when n is not a prime, for example in Z6 we have (2)(3) = 0.

• Z⊕ Z, for example (1, 0)(0, 1) = (0, 0).

• M2Z because it’s not commutative to begin with.

Note: Integral domains are assumed to have unity for historical reasons. It’s possible to
consider rings which have no zero divisors but have no unity (like 2Z) but these are not
considered integral domains.

(c) Theorem (Cancellation): If R is an integral domain and a, b, c ∈ R with a 6= 0 and
ab = ac then b = c.

Note: In groups we can do this because of inverses but here this is not the reason!

Proof: If ab = ac then ab − ac = 0 and so a(b − c) = 0. Since a 6= 0 we have b − c = 0
and so b = c. QED

3. Fields

(a) Definition: A commutative ring with unity is a field if every nonzero element is a unit.

Note: Recall a unit is an element with a multiplicative inverse so this is basically saying
that each nonzero element has a multiplicative inverse. In this case we have to have a
unity to even begin the discussion about whether elements are units.



Example: The following are all fields: R, Q, C, Z3[i] = {a + bi | a, b ∈ Z3 (not obvious)

Example: The following are all not fields: Z, R[x]

Note: As we’ll see, fields are a subset of integral domains (which we know are a subset
of rings).

(b) Theorem: Every field is an integral domain.

Proof: Suppose R is a field and a, b ∈ R with ab = 0. We claim a = 0 or b = 0. If a = 0
we are done. if not then we can multiply both sides by a−1 and get b = 0. QED

(c) Note: The reverse is not true, we can have an integral domain which is not a field, for
example Z.

However we do have the following:

(d) Theorem: Every finite integral domain is a field.

Proof: Let R be a finite integral domain with unity 1 and let a ∈ R. We claim a is a
unit. If a = 1 then we are done. If a 6= 1 then examine a1, a2, a3, .... Since R is finite two
of these must be equal, say ai = aj for i > j. By cancellation then we have ai−j = 0 and
so a

(
ai−j−1

)
= 1 and we have found the multiplicative inverse of a. QED

Example: If p is a prime then Zp is a finite integral domain and hence is a field.


