Math 403 Chapter 13: Integral Domains and Fields

1. Introduction: Rings are closer to familiar structures like \mathbb{R} in that they get addition (therefore subtraction) and multiplication, but they don't necessarily get division. More generally certain standard assumptions break down. For example in \mathbb{R} we know that if ab = 0 then a = 0 or b = 0 but this isn't necessarily the case in a general ring. What we'll do in this chapter is focus on certain types of ring in which behavior is a little more familiar.

2. Integral Domains:

(a) **Definition:** If R is a commutative ring then $a \in R$ is a zero-divisor if there is some $b \in \mathbb{R}$ with ab = 0.

Example: In \mathbb{Z}_{10} the integer 5 is a zero-divisor because (5)(2) = 0 whereas 3 is not a zero-divisor because there is no $b \in \mathbb{Z}_{10}$ with 3b = 0.

Note: When defining a zero-divisor we requite R to be commutative to avoid issues that arise if ab = 0 but $ba \neq 0$. This can happen in rings, for example in $M_2\mathbb{R}$:

$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ but } \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix} =$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$ b	ut $\begin{bmatrix} 0\\1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix} =$	$=\begin{bmatrix}0\\1\end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
--	--	---	---	---------------------------------------	---	---	---	---	-------------------------------------	---------------------------------------

This complicates the definition as to whether we should consider a and b to be zerodivisors.

(b) **Definition:** A commutative ring with a unity is an *integral domain* if it has no zerodivisors.

In other words a commutative ring with unity is an integral domain if, whenever ab = 0, we must have a = 0 or b = 0.

Example: The following are all integral domains: \mathbb{Z} , \mathbb{Z}_p when p is a prime, \mathbb{R} , \mathbb{Q} , $\mathbb{Z}[x]$, $\mathbb{Z}[\sqrt{2}]$

Example: The following are all not integral domains:

- \mathbb{Z}_n when n is not a prime, for example in \mathbb{Z}_6 we have (2)(3) = 0.
- $\mathbb{Z} \oplus \mathbb{Z}$, for example (1, 0)(0, 1) = (0, 0).
- $M_2\mathbb{Z}$ because it's not commutative to begin with.

Note: Integral domains are assumed to have unity for historical reasons. It's possible to consider rings which have no zero divisors but have no unity (like $2\mathbb{Z}$) but these are not considered integral domains.

(c) **Theorem (Cancellation):** If R is an integral domain and $a, b, c \in R$ with $a \neq 0$ and ab = ac then b = c.

Note: In groups we can do this because of inverses but here this is not the reason! **Proof:** If ab = ac then ab - ac = 0 and so a(b - c) = 0. Since $a \neq 0$ we have b - c = 0and so b = c. \mathcal{QED}

3. Fields

(a) Definition: A commutative ring with unity is a *field* if every nonzero element is a unit. Note: Recall a unit is an element with a multiplicative inverse so this is basically saying that each nonzero element has a multiplicative inverse. In this case we have to have a unity to even begin the discussion about whether elements are units. **Example:** The following are all fields: \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3 \text{ (not obvious)} \}$ **Example:** The following are all not fields: \mathbb{Z} , $\mathbb{R}[x]$

Note: As we'll see, fields are a subset of integral domains (which we know are a subset of rings).

(b) **Theorem:** Every field is an integral domain.

Proof: Suppose R is a field and $a, b \in R$ with ab = 0. We claim a = 0 or b = 0. If a = 0 we are done, if not then we can multiply both sides by a^{-1} and get b = 0. QED

(c) Note: The reverse is not true, we can have an integral domain which is not a field, for example \mathbb{Z} .

However we do have the following:

- (d) **Theorem:** Every finite integral domain is a field.
 - **Proof:** Let R be a finite integral domain with unity 1 and let $a \in R$. We claim a is a unit. If a = 1 then we are done. If $a \neq 1$ then examine a^1, a^2, a^3, \ldots Since R is finite two of these must be equal, say $a^i = a^j$ for i > j. By cancellation then we have $a^{i-j} = 0$ and so $a(a^{i-j-1}) = 1$ and we have found the multiplicative inverse of a. \mathcal{QED} **Example:** If p is a prime then \mathbb{Z}_p is a finite integral domain and hence is a field.