1. Introduction: In group theory we introduced the concept of a normal subgroup and we showed that if $N \triangleleft G$ then we can create the quotient (factor) group G / N. This idea has an analogy in the theory of rings.

2. Ideals:

(a) Definition: A subring $A \leq R$ is called an ideal of R if $\forall r \in R$ and $\forall a \in A$ we have $a r, r a \in A$.
Definition: A is a proper ideal if it is an ideal which is not the entire ring.
Example: For any ring R both $\{0\}$ and R are ideals of R.
Example: $n \mathbb{Z}$ is an ideal of \mathbb{Z}.
Example: The set of polynomials with real coefficients and constant term 0 is an ideal of $\mathbb{R}[x]$.
(b) Theorem (Ideal Test): If $A \subseteq R$ with $A \neq \emptyset$ then A is an ideal of F if:
i. $\forall a, b \in A$ we have $a-b \in A$. Note that $a-b$ means $a+(-b)$.
ii. $\forall a \in A$ and $\forall r \in R$ we have $a r, r a \in A$.

Proof: This is a straightforward mash-up of the subring test and the definition of an ideal.
$\mathcal{Q E D}$
(c) Definition: If R is a commutative ring with unity and $a \in R$ then the principal ideal generated by a is the set:

$$
\langle a\rangle=\{r a \mid r \in R\}
$$

Note: The fact that its an ideal follows from the definition.
Warning: We use the notation $\langle g\rangle$ in group theory but the definitions are different!
Example: In $\mathbb{R}[x]$ the ideal $\langle x\rangle$ consists of all polynomials with constant term 0 .
Definition: We can expand the above for $a_{1}, \ldots, a_{n} \in R$ commutative with unity to have the ideal generated by all of the a_{i} :

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

Example: In $\mathbb{Z}[x]$ the ideal $\langle x, 2\rangle$ consists of all polynomials with even constant term. This is because an element in this ideal has the form $p(x)(x)+q(x)(2)$ for $p(x), q(x) \in \mathbb{Z}[x]$.

3. Quotient (Factor) Rings:

(a) Definition: Let R be a ring and A be a subring of A. Then the set of cosets (defined the same way as for groups with addition):

$$
R / A=\{r+A \mid r \in R\}
$$

is a ring under the operations $(r+A)+(s+A)=(r+s)+A$ and $(r+A)(s+A)=r s+A$ iff A is an ideal of R.
Proof: Suppose A is an ideal of R. Since R is an Abelian group under addition we know A is a normal subgroup and so the set of cosets forms a group under addition. Next we need to show that our multiplication is well-defined. Suppose we have $s+A=s^{\prime}+A$ and
$t+A=t^{\prime}+A$, then $s^{\prime}+0 \in s+A$ so $s^{\prime}=s+a$ and likewise $t^{\prime}=t+b$ for $a, b \in A$. Then observe that:

$$
s^{\prime} t^{\prime}+A=(s+a)(t+b)+A=s t+a t+s b+a b+A=s t+A
$$

The final equality holds because $a t, s b \in A$ because A is an ideal and $a b \in A$ because A is a subring of R. Showing that multiplication is associative and distributes over addition follows immediately.
Note that if A is not an ideal of R then choose $a \in A$ and $r \in R$ with (WLOG) ar $\notin A$. Then $(a+A)(r+A)=$ ar $+A$ but $(a+A)(r+A)=(0+A)(r+A)=0+A$ which contradicts the fact that ar $\notin A$. $\mathcal{Q E D}$
Example: The quotient ring $\mathbb{Z} / 4 \mathbb{Z}$ consists of the elements $\{0+4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}\}$ with obvious operations, for example $(2+4 \mathbb{Z})+(3+4 \mathbb{Z})=5+4 \mathbb{Z}=1+4 \mathbb{Z}$ and $(2+4 \mathbb{Z})(3+4 \mathbb{Z})=6+4 \mathbb{Z}=2+4 \mathbb{Z}$.
Example: Consider the quotient ring $\mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle$. What do the distinct cosets look like? Well we have $x^{2}-2+\left\langle x^{2}-2\right\rangle=0+\left\langle x^{2}-2\right\rangle$ so we can think of this as $x^{2}+\left\langle x^{2}-2\right\rangle=$ $2+\left\langle x^{2}-2\right\rangle$. This allows drastic simplification of the cosets, for example:

$$
\begin{aligned}
7 x^{6}+x^{5}-3 x^{2}+4 x-1+\left\langle x^{2}-2\right\rangle & =7\left(x^{2}\right)^{3}+\left(x^{2}\right)^{2} x-3\left(x^{2}\right)+4 x-1+\left\langle x^{2}-2\right\rangle \\
& =7(2)^{3}+(2)^{2} x-3(2)+4 x-1+\left\langle x^{2}-2\right\rangle \\
& =8 x-49+\left\langle x^{2}-2\right\rangle
\end{aligned}
$$

and similarly every $p(x)+\left\langle x^{2}-2\right\rangle$ is equivalent to $a x+b+\left\langle x^{2}-2\right\rangle$ with $a, b \in \mathbb{Z}$. Could we reduce further? In other words could two of these be the same? Well suppose $a x+b+\left\langle x^{2}-2\right\rangle=c x+d+\left\langle x^{2}-2\right\rangle$. Then we have $(a-c) x+(b-d)+\langle x-2\rangle=0+\left\langle x^{2}-2\right\rangle$ and so $(a-c) x+(b-d) \in\left\langle x^{2}-2\right\rangle$.
However elements in $\left\langle x^{2}-2\right\rangle$ have the form $q(x)\left(x^{2}-2\right)$ for $q(x) \in \mathbb{Z}[x]$ and therefore have degree at least 2 except for the zero polynomial. Since $(a-c) x+(b-d)$ has degree at most 1 it must be the zero polynomial and so $a=c$ and $b=d$. Thus these elements are all distinct.
How does multiplication work in this ring? In general:

$$
\begin{aligned}
\left(a x+b+\left\langle x^{2}-2\right\rangle\right)\left(c x+d+\left\langle x^{2}-2\right\rangle\right) & =a c x^{2}+(a d+b c) x+b d+\left\langle x^{2}-2\right\rangle \\
& =a c(2)+(a d+b c) x+b d+\left\langle x^{2}-2\right\rangle \\
& =(a d+b c) x+(b d+2 a c)+\left\langle x^{2}-2\right\rangle
\end{aligned}
$$

Example: Consider the quotient ring $\mathbb{Z}[i] /\langle 3+i\rangle$. What do the distinct cosets look like? Well we have $3+i+\langle 3+i\rangle=0+\langle 3+i\rangle$ so we can think of this as $i+\langle 3+i\rangle=-3+\langle 3+i\rangle$. However since $i^{2}=-1$ we can square both sides to get $-1+\langle 3+i\rangle=9+\langle 3+i\rangle$ and so $10+\langle 3+i\rangle=0+\langle 3+i\rangle$.
Since every coset has the form $a+b i+\langle 3+i\rangle$ such a coset can be rewritten by replacing i with -3 and 10 with 0 , therefore every coset has the form $c+\langle 3+i\rangle$ for $c \in \mathbb{Z}_{10}$.
Could two of these coset be identical? Suppose $a+\langle 3+i\rangle=b+\langle 3+i\rangle$ so that $a-b \in$ $\langle 3+i\rangle$ and so $a-b=(c+d i)(3+i)=(3 c-d)+(c+3 d) i$ for some $c, d \in \mathbb{Z}$. But then $3 c-d=a-b$ and $c+3 d=0$. Solving these yields $a-b=-10 d$ but since $a, b \in \mathbb{Z}_{10}$ we have $d=0$ and $a=b$.
Thus they are unique. In fact this is essentially the ring \mathbb{Z}_{10} written differently.

4. Maximal and Prime Ideals:

(a) Definition: A proper ideal A of a commutative ring R is a maximal ideal of R if whenever B is another ideal with $A \subseteq B \subseteq R$ then $B=A$ or $B=R$.
Basically this means that an ideal which is larger must be the entire ring. Typically proving that an ideal is maximal involves taking another ideal B with $A \subsetneq B$ and showing $B=R$. Typically to show $B=R$ we show $1 \in B$ because then $r=r(1) \in B$ for any $r \in R$.
Example: The ideal $6 \mathbb{Z}$ is not maximal in \mathbb{Z} because $6 \mathbb{Z} \subsetneq 2 \mathbb{Z} \subsetneq \mathbb{Z}$.
Example: The ideal $7 \mathbb{Z}$ is maximal in \mathbb{Z}. To see this suppose $7 \mathbb{Z} \subsetneq B \subseteq R$, then there is some $b \in B$ with $b \notin 7 \mathbb{Z}$ and so $\operatorname{gcd}(7, b)=1$ and so there exist $x, y \in \mathbb{Z}$ with $7 x+b y=1$. Then since $b \in B$ and $7 \in 7 \mathbb{Z} \subsetneq B$ we have $1 \in B$ and then $r=r(1) \in B$ for all r and so $R=B$.
Example: The ideal $\langle x\rangle$ is not maximal in $\mathbb{Z}[x]$ since $\langle x\rangle \subsetneq\langle x, 2\rangle \subsetneq \mathbb{Z}[x]$.
(b) Definition: A proper ideal A of a commutative ring R is a prime ideal of R if for all $a, b \in R$ if $a b \in A$ then $a \in A$ or $b \in A$.
Example: The ideal $6 \mathbb{Z}$ is not prime in \mathbb{Z} because $(2)(3) \in 6 \mathbb{Z}$ but $2 \notin 6 \mathbb{Z}$ and $3 \notin 6 \mathbb{Z}$.
Example: The ideal $7 \mathbb{Z}$ is prime in \mathbb{Z}. To see this suppose $a b \in 7 \mathbb{Z}$. Then $7 \mid a b$ and so $7 \mid a$ or $7 \mid b$ and so $a \in 7 \mathbb{Z}$ or $b \in 7 \mathbb{Z}$.
Example: The ideal $\langle x\rangle$ is prime in $\mathbb{Z}[x]$. To see this suppose $p(x) q(x) \in\langle x\rangle$. The ideal $\langle x\rangle$ consists of all polynomials with constant term zero and hence one of $p(x)$ or $q(x)$ must have constant term 0 since the constant term of $p(x) q(x)$ is the product of the constant terms of $p(x)$ and of $q(x)$. Thus either $p(x)$ or $q(x)$ is in $\langle x\rangle$.
(c) Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R / A is an integral domain iff A is a prime ideal.
Proof:
\Longrightarrow : Suppose R / A is an integral domain and suppose $a b \in A$. Then $(a+A)(b+A)=$ $a b+A=0+A$ so either $a+A=0+A$ or $b+A=0+A$ and so either $a \in A$ or $b \in A$. \Longleftarrow : Suppose A is a prime ideal and suppose $(a+A)(b+A)=0+A$. Then $a b+A=0+A$ and so $a b \in A$ and so either $a \in A$ or $b \in A$ and so either $a+A=0+A$ or $b+A=0+A$. $\mathcal{Q E D}$
(d) Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R / A is a field iff A is maximal.
Proof:
\Longrightarrow : Suppose R / A is a field and $A \subsetneq B \subseteq R$. Let $b \in B$ with $b \notin A$. Then $b+A \neq 0+A$ and so $b+A$ is a unit in R / A and so there is some $c+A$ with $(b+A)(c+A)=1+A$. Thus $b c+A=1+A$ and so $1-b c \in A \subseteq B$. Since $b \in B$ we then have $b c \in B$ (because B is an ideal) and hence $1 \in B$ and so $B=R$.
\Longleftarrow : Suppose A is maximal and let $x+A \neq 0+A$. Consider the set $B=\{r x+a \mid r \in$ $R, a \in A\}$. A short proof (omitted) shows that B is an ideal of R which contains but is larger than A. Thus $B=R$ and so $1=r^{\prime} x+a^{\prime}$ for some $r^{\prime} \in R$ and $a^{\prime} \in A$ and so $\left(r^{\prime}+A\right)(x+A)=r^{\prime} x+A=1-a^{\prime}+A=1+A$.
$\mathcal{Q E D}$
Corollary: If R is commutative then if an ideal A is maximal then it is prime.
Proof: If A is maximal then R / A is a field and hence R / A is an integral domain and hence A is prime.
$\mathcal{Q E D}$
The reverse is of course not true as we have seen: The ideal $\langle x\rangle$ is prime but not maximal in $\mathbb{Z}[x]$.

