Math 403 Chapter 15: Ring Homomorphisms

1. **Introduction:** As with groups, among other things, ring homomorphism are a way of creating ideals. In reality we'll use them less than we did with groups.

2. Homomorphisms - Basics:

- (a) **Definition:** A ring homomorphism from a ring R_1 to a ring R_2 is a mapping $\phi : R_1 \to R_2$ such that for all $a, b \in R_1$ we have:
 - $\phi(a+b) = \phi(a) + \phi(b)$
 - $\phi(ab) = \phi(a)\phi(b)$

Note that the operations may in theory differ, the left being in R and the right in S. Also note that a ring homomorphism is in fact a group homomorphism with the group operation being the + inside the ring.

- (b) **Definition:** A ring homomorphism is a *ring isomorphism* if it is 1-1 and onto.
- (c) **Definition:** The kernel of a ring homomorphism $\phi : R_1 \to R_2$ is the set:

$$\operatorname{Ker}\phi = \{a \in R_1 \mid \phi(a) = 0 \in R_2\}$$

(d) **Examples:**

Example: The mapping $\phi : \mathbb{Z} \to \mathbb{Z}_n$ given by $\phi(x) = x \mod n$ is a ring homomorphism. The kernel is $n\mathbb{Z}$.

Example: The mapping $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(a + bi) = a - bi$ is a ring homomorphism. The kernel is 0.

Example: The mapping $\phi : \mathbb{R}[x] \to \mathbb{R}$ given by $\phi(p(x)) = p(2)$ is a ring homomorphism. The kernel is all the polynomials with x-intercept at x = 2.

Example: The mapping $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_{30}$ given by $\phi(x) = 10x \mod 30$ is a ring homomorphism. This is not obvious because of the modulus change. To clarify the problem, when we write $\phi(x) = 10x \mod 30$ we assume $x \in \{0, 1, ..., 11\}$. However when we do $\phi(x + y)$ we have $x, y \in \{0, 1, ..., 11\}$ but x + y is not necessarily so, rather it is reduced mod 12 and then ϕ is applied. Thus what we are really trying to show is that:

 $\phi((x+y) \bmod 12) = (\phi(x) \bmod 30) + (\phi(y) \bmod 30)$

To show this note that if we write x + y = 12q + r with $0 \le r < 12$ then:

$$\phi((x + y) \mod 12) = \phi((12q + r) \mod 12) \mod 30$$

= $\phi(r) \mod 30$
= $10r \mod 30$
= $10(x + y - 12q) \mod 30$
= $10x + 10y - 120q \mod 30$
= $10x + 10y \mod 30$
= $(\phi(x) + \phi(y)) \mod 30$
= $(\phi(x) \mod 30) + (\phi(y) \mod 30)$

And similarly if we write xy = 12q + r with $0 \le r < 12$ then:

$$\phi((xy) \mod 12) = \phi((12q + r) \mod 12) \mod 30$$

= $\phi(r) \mod 30$
= $10r \mod 30$
= $10(xy - 12q) \mod 30$
= $10xy - 120q \mod 30$
= $10xy \mod 30$
= $10xy + 90xy \mod 30$
= $(10x)(10y) \mod 30$
= $(\phi(x)\phi(y)) \mod 30$
= $(\phi(x) \mod 30)(\phi(y) \mod 30)$

- 3. Theorem (Properties): Let $\phi : R \to S$ be a ring homomorphism. Let A be a subring of R and let B be an ideal of S.
 - (a) $\phi(A)$ is a subring of S.
 - (b) If A is an ideal of R then $\phi(A)$ is an ideal of $\phi(R)$. Thus if ϕ is onto then $\phi(A)$ is an ideal of S.
 - (c) $\phi^{-1}(B)$ is an ideal of R.
 - (d) If R is commutative then so is $\phi(R)$.
 - (e) If R has unity 1, if $S \neq \{0\}$ and if ϕ is onto, then $\phi(1)$ is the unity for S.
 - (f) ϕ is an isomorphism iff ϕ is onto and $\text{Ker}\phi = \{0\}$.
 - (g) If ϕ is an isomorphism then $\phi^{-1}: S \to R$ is also an isomorphism.

Proof: All are straightforward.

4. Connection to Quotient Rings

(a) Theorem (Kernels are Ideals): Let φ : R → S be a ring homomorphism. Then Kerφ is an ideal of R.
Proof: Straightfoward. QED

QED

- (b) **Theorem (First Isomorphism Theorem for Rings):** Let $\phi : R \to S$ be a ring homomorphism. Then the mapping $\psi : R/\operatorname{Ker}\phi \to \phi(R)$ given by $\psi(r + \operatorname{Ker}\phi) = \phi(r)$ is a ring isomorphism. **Proof:** Straightforward. \mathcal{QED}
- (c) **Theorem (Ideals are Kernels):** Every ideal A of a ring R is the kernel of the ring homomorphism from R to R/A taking $r \mapsto r + A$. **Proof:** Straightforward. QED