## Math 403 Chapter 15: Ring Homomorphisms

1. Introduction: As with groups, among other things, ring homomorphism are a way of creating ideals. In reality we'll use them less than we did with groups.

## 2. Homomorphisms - Basics:

(a) Definition: A ring homomorphism from a ring $R_{1}$ to a ring $R_{2}$ is a mapping $\phi: R_{1} \rightarrow R_{2}$ such that for all $a, b \in R_{1}$ we have:

- $\phi(a+b)=\phi(a)+\phi(b)$
- $\phi(a b)=\phi(a) \phi(b)$

Note that the operations may in theory differ, the left being in $R$ and the right in $S$.
Also note that a ring homomorphism is in fact a group homomorphism with the group operation being the + inside the ring.
(b) Definition: A ring homomorphism is a ring isomorphism if it is 1-1 and onto.
(c) Definition: The kernel of a ring homomorphism $\phi: R_{1} \rightarrow R_{2}$ is the set:

$$
\operatorname{Ker} \phi=\left\{a \in R_{1} \mid \phi(a)=0 \in R_{2}\right\}
$$

(d) Examples:

Example: The mapping $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $\phi(x)=x \bmod n$ is a ring homomorphism.
The kernel is $n \mathbb{Z}$.
Example: The mapping $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(a+b i)=a-b i$ is a ring homomorphism. The kernel is 0 .
Example: The mapping $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}$ given by $\phi(p(x))=p(2)$ is a ring homomorphism. The kernel is all the polynomials with $x$-intercept at $x=2$.
Example: The mapping $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ given by $\phi(x)=10 x \bmod 30$ is a ring homomorphism. This is not obvious because of the modulus change. To clarify the problem, when we write $\phi(x)=10 x \bmod 30$ we assume $x \in\{0,1, \ldots, 11\}$. However when we do $\phi(x+y)$ we have $x, y \in\{0,1, \ldots, 11\}$ but $x+y$ is not necessarily so, rather it is reduced mod 12 and then $\phi$ is applied. Thus what we are really trying to show is that:

$$
\phi((x+y) \bmod 12)=(\phi(x) \bmod 30)+(\phi(y) \bmod 30)
$$

To show this note that if we write $x+y=12 q+r$ with $0 \leq r<12$ then:

$$
\begin{aligned}
\phi((x+y) \bmod 12) & =\phi((12 q+r) \bmod 12) \bmod 30 \\
& =\phi(r) \bmod 30 \\
& =10 r \bmod 30 \\
& =10(x+y-12 q) \bmod 30 \\
& =10 x+10 y-120 q \bmod 30 \\
& =10 x+10 y \bmod 30 \\
& =(\phi(x)+\phi(y)) \bmod 30 \\
& =(\phi(x) \bmod 30)+(\phi(y) \bmod 30)
\end{aligned}
$$

And similarly if we write $x y=12 q+r$ with $0 \leq r<12$ then:

$$
\begin{aligned}
\phi((x y) \bmod 12) & =\phi((12 q+r) \bmod 12) \bmod 30 \\
& =\phi(r) \bmod 30 \\
& =10 r \bmod 30 \\
& =10(x y-12 q) \bmod 30 \\
& =10 x y-120 q \bmod 30 \\
& =10 x y \bmod 30 \\
& =10 x y+90 x y \bmod 30 \\
& =(10 x)(10 y) \bmod 30 \\
& =(\phi(x) \phi(y)) \bmod 30 \\
& =(\phi(x) \bmod 30)(\phi(y) \bmod 30)
\end{aligned}
$$

3. Theorem (Properties): Let $\phi: R \rightarrow S$ be a ring homomorphism. Let $A$ be a subring of $R$ and let $B$ be an ideal of $S$.
(a) $\phi(A)$ is a subring of $S$.
(b) If $A$ is an ideal of $R$ then $\phi(A)$ is an ideal of $\phi(R)$. Thus if $\phi$ is onto then $\phi(A)$ is an ideal of $S$.
(c) $\phi^{-1}(B)$ is an ideal of $R$.
(d) If $R$ is commutative then so is $\phi(R)$.
(e) If $R$ has unity 1 , if $S \neq\{0\}$ and if $\phi$ is onto, then $\phi(1)$ is the unity for $S$.
(f) $\phi$ is an isomorphism iff $\phi$ is onto and $\operatorname{Ker} \phi=\{0\}$.
(g) If $\phi$ is an isomorphism then $\phi^{-1}: S \rightarrow R$ is also an isomorphism.

Proof: All are straightforward.
$\mathcal{Q E D}$

## 4. Connection to Quotient Rings

(a) Theorem (Kernels are Ideals): Let $\phi: R \rightarrow S$ be a ring homomorphism. Then $\operatorname{Ker} \phi$ is an ideal of $R$.
Proof: Straightfoward.
$\mathcal{Q} \mathcal{E D}$
(b) Theorem (First Isomorphism Theorem for Rings): Let $\phi: R \rightarrow S$ be a ring homomorphism. Then the mapping $\psi: R / \operatorname{Ker} \phi \rightarrow \phi(R)$ given by $\psi(r+\operatorname{Ker} \phi)=\phi(r)$ is a ring isomorphism.
Proof: Straightforward.
$\mathcal{Q E D}$
(c) Theorem (Ideals are Kernels): Every ideal $A$ of a ring $R$ is the kernel of the ring homomorphism from $R$ to $R / A$ taking $r \mapsto r+A$.
Proof: Straightforward.

