
Math 403 Chapter 16: Polynomial Rings

1. Introduction: We’ve seen many examples of polynomial rings like Z[x] and R[x]. The job of
this chapter is to formalize these and look at some overall properties.

2. Basic Construction

(a) Definition: Let R be a commutative ring. Define:

R[x] =
{
rnx

n + rn−1x
n−1 + ...+ r1x+ r0 | ri ∈ R

}
The letter x here can be thought of a variable or just as a placeholder. Either way the
familiar structure allows us to add, subtract and multiply these as we do traditional
polynomials even if the ring were some strange abstract entity.

(b) Theorem/Definition: If R is a ring then so is R[x], called the ring of polynomials over
(with coefficients in) R, under familiar addition and multiplication methods derived from
polynomials noting that the coefficients inherit their behavior from the original ring.
Proof: Straightfoward. QED
For example in Z3[x] we would do something like:

(2x2 + x+ 1)(x+ 2) = (2x2 + x+ 1)(x) + (2x2 + x+ 1)(2)

= 2x3 + x2 + x+ 4x2 + 2x+ 2

= 2x3 + 2x2 + 2

3. Properties:

(a) Theorem: If D is an integral domain then so is D[x].
Proof: We need to show that D[x] is commutative with unity and no zero-divisors.
The unity is the unity from D and commutativity follows from the commutativity of D
and the definition of multiplication in D[x]. To see that D[x] has no zero-divisors take
p(x) = rnx

n + ... and q(x) = smx
m + ... in D[x] with rn, sm 6= 0 and suppose that

p(x)q(x) = 0. Since p(x)q(x) = rnsmx
n+m + ... we then must have rnsm = 0 implying

either rn = 0 or sm = 0, a contradiction. QED
Note: It follows also that in D[x] when polynomials are multiplied the degrees are
added. This is not true if D is not an integral domain, for example in Z6[x] we have
(3x+ 2)(4x+ 5) = 12x2 + 23x+ 10 = 5x+ 4.

(b) Theorem (The Division Algorithm for F [x]): Let F be a field and let f(x), g(x) ∈
F [x] with g(x) 6= 0. Then there exist unique q(x), r(x) ∈ F [x] with 0 ≤ deg(r(x)) <
deg(g(x)) and f(x) = q(x)g(x) + r(x).
Proof: The basic idea is to formalize the process of long division in an inductive sense.
We omit the details, they’re not much fun. QED
Note: This division is essentially long division of polynomials but can be confusing
because the values are chosen from the field R which might not be familar:

Example: In Z3 we can divide 2x2 + 1 into x4 + 2x3 + 2x+ 1:

2x2 +x +2
2x2 + 1 | x4 +2x3 +0x2 +2x +1

x4 +2x2

2x3 +x2 +2x +1
2x3 +x

x2 +x +1
x2 +2

x +2

Thus we have x4 + 2x3 + 2x+ 1 = (2x2 + x+ 2)(2x2 + 1) + (x+ 2).



(c) Corollary (The Remainder Theorem): Let F be a field, a ∈ F and f(x) ∈ F [x].
Then f(a) is the remainder when f(x) is divided by x− a.
Proof: By the Division Algorithm we have f(x) = q(x)(x − a) + b and then f(a) =
q(a)(a− a) + b = b. QED

(d) Corollary (The Factor Theorem): Let F be a field, a ∈ F and f(x) ∈ F [x]. Then a
is a zero/root of f(x) iff x− a is a factor of f(x).
Proof: Well, a is a zero/root of f(x) iff f(a) = 0 but by the previous colloary f(a) is
the remainder when f(x) is divided by x − a. It follows that a is a zero/root of f(x) iff
f(x) = q(x)(x− a) + 0 and the result follows. QED
Definition: A factor of the form ax+ b is a linear factor. Since ax+ b = a(x+ a−1b) we
know that roots correspond to linear factors.

(e) Theorem (Counting Zeros/Roots): A polynomial of degree n over a field F has at
most n zeros/roots, counting multiplicity.
Note: If R is not a field then this may not be true, for example in Z6[x] the polynomial
f(x) = x2 + x has four roots since f(0) = f(2) = f(3) = f(5) = 0.
Proof: By the previous corollary we show that the polynomial has at most n linear
factors. We proceed by induction on n. If n = 1 then the polynomial has degree n = 1
and hence has the form p(x) = ax+ b = a(x+ a−1b) for a, b ∈ F and hence has a single
linear factor. Suppose the statement is true for some k ≥ 1 and let p(x) have degree k+1.
If p(x) has no linear factors then we are done, otherwise let x−a be one such linear factor
and so p(x) = (x− a)q(x) where deg(q(x)) = k. By the induction hypothesis q(x) has k
or fewer linear factors and hence p(x) has k + 1 or fewer. QED

4. Principal Ideal Domains

(a) Definition: A principal ideal domain (PID) is an integral domain R in which every ideal
has the form 〈a〉 for some a ∈ R. Recall that 〈a〉 = {ra | r ∈ R}.

(b) Theorem: If F is a field then F [x] is a PID.
Proof: We know F [x] is an integral domain since F is an integral domain. Let I be an
ideal of F [x].

• If I = {0} then I = 〈0〉 and we are done.

• If I 6= {0} let g(x) be a non-zero polynomial of minimal degree in I (which exists
by well-ordering). If g(x) is constant then g(x) = α ∈ F and then I = F = 〈α〉
because for any r ∈ F we have r = rα−1α ∈ 〈α〉. Suppose then that g(x) is not
constant, we claim I = 〈g(x)〉. Since g(x) ∈ I we have 〈g(x)〉 ⊆ I. We claim
I ⊆ 〈g(x)〉. Let f(x) ∈ I. By the Division Algorithm write f(x) = q(x)g(x) + r(x)
with 0 ≤ deg(r(x)) < deg(g(x)). Since r(x) = f(x)− q(x)g(x) we have r(x) ∈ I and
the fact that g(x) is a nonzero polynomial of minimal degree implies that r(x) = 0
and so f(x) = q(x)g(x) and so f(x) ∈ 〈g(x)〉.

QED
(c) Corollary: Let F be a field and let I be a nonzero ideal of F [x]. Let g(x) ∈ F [x]. Then

I = 〈g(x)〉 iff g(x) is a nonzero polynomial of minimum degree in I.
Proof: This is also established by the proof above. QED

(d) Note: If R is not a field then this is not the case, for example in Z[x] the ideal 〈x, 2〉 is
not principal. This isn’t simply because we’ve generated it by two polynomials but rather
that it cannot be genereted by one. There is no p(x) ∈ Z[x] such that 〈p(x)〉 = 〈x, 2〉.
Can you show this?


