1. Introduction: The notion of factorization of polynomials depends heavily on the ring in question. For example consider $p(x)=2 x+2$. In $\mathbb{Z}[x]$ we can factor this as $2 x+2=2(x+1)$ but in $2 \mathbb{Z}[x]$ we cannot factor it. What we do in this section is work out some specifics.

2. Reducibility

(a) Definition: Let D be an integral domain and let $f(x)$ be a non-zero non-unit in $D[x]$, we say that $f(x)$ is reducible over D if we can factor $f(x)=g(x) h(x)$ where both $g(x)$ and $h(x)$ are non-units. Otherwise we say that $f(x)$ is irreducible over D.
Note: The phrase "reducible/irreducible over D " can be best interpreted as "factorable/ nonfactorable into non-units in $D[x]$ ".
Note: This is basically an generalization of the notion of primality. For example in \mathbb{Z} we say that 6 is composite (think reducible) because we may write $6=(2)(3)$ and neither is a unit (the units are ± 1). On the other hand we cannot do this with 5 , which is prime (think irreducible). The integers $0,-1,1$ are considered neither.
Example: The polynomial $2 x+2$ is reducible over \mathbb{Z} since we can write $2 x+2=2(x+1)$ and neither 2 nor $x+1$ is a unit in $\mathbb{Z}[x]$.
Example: The polynomial $2 x+2$ is irreducible over \mathbb{R} since any factorization results in at least one unit, for example $2 x+2=2(x+1)$ doesn't count since 2 is a unit.
Example: The polynomial $x^{2}-5$ is reducible over \mathbb{R} since we can write $x^{2}-5=$ $(x-\sqrt{5})(x+\sqrt{5})$ and neither is a unit in $\mathbb{R}[x]$.
Example: The polynomial $x^{2}-5$ is irreducible over \mathbb{Q} since we cannot factor it into non-units in $\mathbb{Q}[x]$.
(b) Theorem (Reducibility for Degrees 2 and 3): Let F be a field. If $f(x) \in F[x]$ has degree 2 or 3 then $f(x)$ is reducible over F iff $f(x)$ has a zero/root in F.
Note: This is a generalization of a well-known fact in $\mathbb{R}[x]$. For example if $f(x)=$ $x^{3}+x^{2}-x-10$ then knowing that $f(2)=0$ is equivalent to knowing that $x-2$ is a factor and in fact $x^{3}+x^{2}-x-10=(x-2)\left(x^{2}+3 x+5\right)$. This doesn't work in degree 4 or higher, for example $x^{4}+2 x^{2}+1$ factors as $\left(x^{2}+1\right)\left(x^{2}+1\right)$ but has no zeros/roots in \mathbb{R}.
Note: Since \mathbb{Z}_{p} (with p a prime) is a field, in $\mathbb{Z}_{p}[x]$ we can check for reducibility in the degree $2 / 3$ case by simply checking all roots. For example consider $f(x)=x^{4}+$ $2 x^{2}+x+1 \in \mathbb{Z}_{3}[x]$. We check $f(0)=1, f(1)=2$, and $f(2)=0$. Since $f(2)=0$ we know that $(x-2)$ is a factor and $f(x)$ is reducible over \mathbb{Z}_{3}. On the other hand consider $f(x)=x^{3}+x^{2}+x+2 \in \mathbb{Z}_{3}[x]$. We check $f(0)=2, f(1)=2$ and $f(2)=1$. Since there are no zeros/roots we know $f(x)$ is irreducible over \mathbb{Z}_{3}.
Proof:
\Longrightarrow : Suppose $f(x)$ is reducible, then $f(x)=g(x) h(x)$ and since neither is a unit, both have positive degree, and then since the degrees add to 3 , one of them must have degree 1 and the other degree 2 . The one degree 1 factor yields a zero/root.
\Longleftarrow : Suppose $f(x)$ has a zero/root. Then by the Factor Theorem $f(x)=(x-a) g(x)$ and so $f(x)$ is reducible.
$\mathcal{Q E D}$
(c) Theorem (Reducibility over \mathbb{Q} implies over \mathbb{Z}): If $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} then it is reducible over \mathbb{Z}.
Proof: Omit.
$\mathcal{Q E D}$
Note: Essentially this states that if we have a polynomial with coefficients in \mathbb{Z} that if we can factor it into non-units in $\mathbb{Q}[x]$ then we can factor it into non-units in $\mathbb{Z}[x]$.
Example: As an example consider $f(x)=10 x^{2}-11 x-35$. Observe that $f(x)=$ $\left(5 x-\frac{25}{2}\right)\left(2 x+\frac{14}{5}\right)$ so we can factor it in $\mathbb{Q}[x]$. But in fact $f(x)=(2 x-5)(5 x+7)$ as well, so we can factor it in $\mathbb{Z}[x]$. The theorem states that this can always be done.
(d) Theorem (Mod p Irreducibility Test): Let p be a prime and let $f(x) \in \mathbb{Z}[x]$ with degree 1 or greater. Let $\bar{f}(x)$ be the polynomial in $\mathbb{Z}_{p}[x]$ obtained by reducing all of $f(x)$'s coefficients mod p. Then if $\operatorname{deg}(\bar{f}(x))=\operatorname{deg}(f(x))$ and if $\bar{f}(x)$ is irreducible over \mathbb{Z}_{p} then $f(x)$ is irreducible over \mathbb{Q}.
Note: Be careful of how this is used. Basically we can pick a prime p and if the degree of $\bar{f}(x)$ is unchanged and if $\bar{f}(x)$ is irreducible over \mathbb{Z}_{p} (which can be easily tested in the cases of degrees 2 and 3) then we gain irreducibility over \mathbb{Z}. However if the degree drops then nothing can be concluded and if $\bar{f}(x)$ is reducible over \mathbb{Z}_{p} then nothing is concluded. When nothing is concluded we can of course try other p but we could continue to gain no new knowledge each time.
Example: Consider $f(x)=x^{3}+7 x^{2}+13 x-4$. Using $p=2$ we have $\bar{f}(x)=x^{3}+x^{2}+x$. This is reducible over \mathbb{Z}_{p} and nothing is gained.
Using $p=3$ we have $\bar{f}(x)=x^{3}+x^{2}+x+2$. Using the deg $2 / 3$ test we check: $\bar{f}(0)=2$, $\bar{f}(1)=5=2$ and $\bar{f}(2)=16=1$. Since there are no zeros/roots we know that $\bar{f}(x)$ is irreducible over \mathbb{Z}_{3} and then by the $\bmod p$ test $f(x)$ is irreducible over \mathbb{Z}.
Proof: Suppose $f(x)$ is reducible over \mathbb{Q}, then it is reducible over \mathbb{Z} and so $f(x)=$ $g(x) h(x)$ with $g(x), h(x) \in \mathbb{Z}[x]$ both having degree less than $\operatorname{deg}(f(x))$. If we reduce the coefficents of all three $\bmod p$ to get \bar{f}, \bar{g} and \bar{h} then we have $\bar{f}(x)=\bar{g}(x) \bar{h}(x)$ and $\operatorname{deg}(\bar{g}(x)) \leq \operatorname{deg}(g(x))<\operatorname{deg}(f(x))=\operatorname{deg}(\bar{f}(x))$ and similarly for $h(x)$. Of course since which contradicts the fact that $\bar{f}(x)$ is irreducible over \mathbb{Z}_{p}. $\mathcal{Q E D}$
(e) Theorem (Eisenstein's Criterion): Suppose we have:

$$
f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]
$$

If we can find a prime p such that $p \nmid a_{n}, p\left|a_{n-1}, \ldots, p\right| a_{0}, p^{2} \nmid a_{0}$ then $f(x)$ is irreducible over \mathbb{Q}.
Example: The polyomial $6 x^{5}+5 x^{4}-25 x^{3}+15 x+10$ is irreducible over \mathbb{Q} using the prime $p=5$.
Proof: Suppose such a p exists but $f(x)$ is reducible over \mathbb{Q}. We know then that it is reducible over \mathbb{Z} and so $f(x)=g(x) h(x)$ with $g(x)=b_{i} x^{i}+\ldots+b_{1} x+b_{0}$ and $g(x)=$ $c_{j} x^{j}+\ldots+c_{1} x+c_{0}$ with $1 \leq i<n$ and $1 \leq j<n$. Since $a_{0}=b_{0} c_{0}$ and since $p \mid a_{0}$ but $p_{0}^{2} \nmid a_{0}$ we have either $p \mid b_{0}$ or $p \mid c_{0}$ but not both. Without loss of generality assume $p \mid b_{0}$ and $p \nmid c_{0}$. Since $a_{n}=b_{i} c_{j}$ and since $p \nmid a_{n}$ we know $p \nmid b_{i}$ and so there is a smallest index $m \leq i<n$ with $p \nmid b_{m}$. Consider that:

$$
a_{m}=b_{0} c_{m}+b_{1} c_{m-1}+\ldots+b_{m-1} c_{1}+b_{m} c_{0}
$$

Since $p \mid a_{m}$ and $p\left|b_{0}, \ldots p\right| b_{m-1}$ we must have $p \mid b_{m} c_{0}$ which contradicts the fact that $p \nmid b_{m}$ and $p \nmid c_{0}$.

3. Connection to Quotient Rings

(a) Theorem: Let F be a field and let $p(x) \in F[x]$. Then $\langle p(x)\rangle$ is a maximal ideal in $F[x]$ iff $p(x)$ is irreducible over F.
Proof:
\Longrightarrow : Suppose $\langle p(x)\rangle$ is a maximal ideal in $F[x]$. We know that $p(x) \neq 0$ and $p(x)$ is not a unit since neither $\{0\}$ nor \langle unit $\rangle=F[x]$ is a maximal ideal in $F[x]$. Let $p(x)=g(x) h(x)$ be a factorization. Then $\langle p(x)\rangle \subseteq\langle g(x)\rangle \subseteq F[x]$ and since $\langle p(x)\rangle$ is maximal we either have $\langle g(x)\rangle=\langle p(x)\rangle$ or $\langle g(x)\rangle=F[x]$. In the first case we get $\operatorname{deg}(g(x))=\operatorname{deg}(p(x))$ by a previous theorem (they both have minimal and therefore equal degree) and in the second case we get $\operatorname{deg}(g(x))=0$ and so $\operatorname{deg}(h(x))=\operatorname{deg}(p(x))$. Thus $p(x)$ is irreducible.
\Longleftarrow : Suppose that $p(x)$ is irreducible over F. Let I be an ideal with $\langle p(x)\rangle \subseteq I \subseteq F[x]$. Because $F[x]$ is a PID we know that $I=\langle g(x)\rangle$ for some $g(x) \in F[x]$ and so $p(x) \in\langle g(x)\rangle$ and hence $p(x)=g(x) h(x)$ for some $h(x) \in F[x]$. Since $p(x)$ is irreducible either $g(x)$ or $h(x)$ is a constant. In the first case $I=F[x]$ and in the second case $I=\langle p(x)\rangle$. $\mathcal{Q E D}$ Note: This can be used to construct desired fields. If we want a field with 7 elements we can use \mathbb{Z}_{7} but if we want a field with 27 elements we cannot use \mathbb{Z}_{27} because it is not a field (why not?)
But we can construct one when this new theorem is coupled with a theorem from earlier in the class which stated:

An ideal I of a ring R is maximal $\Leftrightarrow R / I$ is a field.
It follows that we can say that given a field F :

$$
p(x) \in F[x] \text { is irreducible over } F \Leftrightarrow\langle p(x)\rangle \text { is maximal } \Leftrightarrow F[x] /\langle p(x)\rangle \text { is a field. }
$$

Consider that we showed that $p(x)=x^{3}+x^{2}+x+2$ is irreducible over \mathbb{Z}_{3} and hence $\mathbb{Z}_{3}[x] /\left\langle x^{3}+x^{2}+x+2\right\rangle$ is a field. Elements in this field have the form $a x^{2}+b x+c+$ $\left\langle x^{3}+x^{2}+x+2\right\rangle$ with $a, b, c \in \mathbb{Z}_{3}$ (why?) and there are 27 such elements.
(b) Corollary: Let F be a field and let $p(x), a(x), b(x) \in F[x]$. If $p(x)$ is irreducible over F and if $p(x) \mid a(x) b(x)$ then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.
Note: This is a generalization of the notion from number theory (that we've used) that if a prime $p \mid a b$ then $p \mid a$ or $p \mid b$.
Proof: Since $p(x)$ is irreducible $F[x] /\langle p(x)\rangle$ is a field and hence an integral domain. Then $\langle p(x)\rangle$ is a prime ideal and since $p(x) \mid a(x) b(x)$ we have $a(x) b(x) \in\langle p(x)\rangle$ and so one of them is in $\langle p(x)\rangle$. The result follows.

