1. Introduction: The notion of factorization of polynomials depends heavily on the ring in question. For example consider p(x) = 2x + 2. In $\mathbb{Z}[x]$ we can factor this as 2x + 2 = 2(x + 1) but in $2\mathbb{Z}[x]$ we cannot factor it. What we do in this section is work out some specifics.

2. Reducibility

(a) **Definition:** Let *D* be an integral domain and let f(x) be a non-zero non-unit in D[x], we say that f(x) is *reducible over D* if we can factor f(x) = g(x)h(x) where both g(x) and h(x) are non-units. Otherwise we say that f(x) is irreducible over *D*.

Note: The phrase "reducible/irreducible over D" can be best interpreted as "factorable/ nonfactorable into non-units in D[x]".

Note: This is basically an generalization of the notion of primality. For example in \mathbb{Z} we say that 6 is composite (think reducible) because we may write 6 = (2)(3) and neither is a unit (the units are ± 1). On the other hand we cannot do this with 5, which is prime (think irreducible). The integers 0, -1, 1 are considered neither.

Example: The polynomial 2x + 2 is reducible over \mathbb{Z} since we can write 2x + 2 = 2(x+1) and neither 2 nor x + 1 is a unit in $\mathbb{Z}[x]$.

Example: The polynomial 2x + 2 is irreducible over \mathbb{R} since any factorization results in at least one unit, for example 2x + 2 = 2(x + 1) doesn't count since 2 is a unit.

Example: The polynomial $x^2 - 5$ is reducible over \mathbb{R} since we can write $x^2 - 5 = (x - \sqrt{5})(x + \sqrt{5})$ and neither is a unit in $\mathbb{R}[x]$.

Example: The polynomial $x^2 - 5$ is irreducible over \mathbb{Q} since we cannot factor it into non-units in $\mathbb{Q}[x]$.

(b) Theorem (Reducibility for Degrees 2 and 3): Let F be a field. If $f(x) \in F[x]$ has degree 2 or 3 then f(x) is reducible over F iff f(x) has a zero/root in F.

Note: This is a generalization of a well-known fact in $\mathbb{R}[x]$. For example if $f(x) = x^3 + x^2 - x - 10$ then knowing that f(2) = 0 is equivalent to knowing that x - 2 is a factor and in fact $x^3 + x^2 - x - 10 = (x - 2)(x^2 + 3x + 5)$. This doesn't work in degree 4 or higher, for example $x^4 + 2x^2 + 1$ factors as $(x^2 + 1)(x^2 + 1)$ but has no zeros/roots in \mathbb{R} .

Note: Since \mathbb{Z}_p (with p a prime) is a field, in $\mathbb{Z}_p[x]$ we can check for reducibility in the degree 2/3 case by simply checking all roots. For example consider $f(x) = x^4 + 2x^2 + x + 1 \in \mathbb{Z}_3[x]$. We check f(0) = 1, f(1) = 2, and f(2) = 0. Since f(2) = 0 we know that (x - 2) is a factor and f(x) is reducible over \mathbb{Z}_3 . On the other hand consider $f(x) = x^3 + x^2 + x + 2 \in \mathbb{Z}_3[x]$. We check f(0) = 2, f(1) = 2 and f(2) = 1. Since there are no zeros/roots we know f(x) is irreducible over \mathbb{Z}_3 .

Proof:

 \implies : Suppose f(x) is reducible, then f(x) = g(x)h(x) and since neither is a unit, both have positive degree, and then since the degrees add to 3, one of them must have degree 1 and the other degree 2. The one degree 1 factor yields a zero/root.

 \Leftarrow : Suppose f(x) has a zero/root. Then by the Factor Theorem f(x) = (x-a)g(x) and so f(x) is reducible. \mathcal{QED}

(c) Theorem (Reducibility over \mathbb{Q} implies over \mathbb{Z}): If $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} then it is reducible over \mathbb{Z} .

Proof: Omit.

QED

Note: Essentially this states that if we have a polynomial with coefficients in \mathbb{Z} that if we can factor it into non-units in $\mathbb{Q}[x]$ then we can factor it into non-units in $\mathbb{Z}[x]$.

Example: As an example consider $f(x) = 10x^2 - 11x - 35$. Observe that $f(x) = (5x - \frac{25}{2})(2x + \frac{14}{5})$ so we can factor it in $\mathbb{Q}[x]$. But in fact f(x) = (2x - 5)(5x + 7) as well, so we can factor it in $\mathbb{Z}[x]$. The theorem states that this can always be done.

(d) **Theorem (Mod** p **Irreducibility Test):** Let p be a prime and let $f(x) \in \mathbb{Z}[x]$ with degree 1 or greater. Let $\bar{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained by reducing all of f(x)'s coefficients mod p. Then if $\deg(\bar{f}(x)) = \deg(f(x))$ and if $\bar{f}(x)$ is irreducible over \mathbb{Z}_p then f(x) is irreducible over \mathbb{Q} .

Note: Be careful of how this is used. Basically we can pick a prime p and if the degree of $\bar{f}(x)$ is unchanged and if $\bar{f}(x)$ is irreducible over \mathbb{Z}_p (which can be easily tested in the cases of degrees 2 and 3) then we gain irreducibility over \mathbb{Z} . However if the degree drops then nothing can be concluded and if $\bar{f}(x)$ is reducible over \mathbb{Z}_p then nothing is concluded. When nothing is concluded we can of course try other p but we could continue to gain no new knowledge each time.

Example: Consider $f(x) = x^3 + 7x^2 + 13x - 4$. Using p = 2 we have $\overline{f}(x) = x^3 + x^2 + x$. This is reducible over \mathbb{Z}_p and nothing is gained.

Using p = 3 we have $\bar{f}(x) = x^3 + x^2 + x + 2$. Using the deg2/3 test we check: $\bar{f}(0) = 2$, $\bar{f}(1) = 5 = 2$ and $\bar{f}(2) = 16 = 1$. Since there are no zeros/roots we know that $\bar{f}(x)$ is irreducible over \mathbb{Z}_3 and then by the mod p test f(x) is irreducible over \mathbb{Z} .

Proof: Suppose f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} and so f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Z}[x]$ both having degree less than $\deg(f(x))$. If we reduce the coefficients of all three mod p to get \bar{f}, \bar{g} and \bar{h} then we have $\bar{f}(x) = \bar{g}(x)\bar{h}(x)$ and $\deg(\bar{g}(x)) \leq \deg(g(x)) < \deg(f(x)) = \deg(\bar{f}(x))$ and similarly for h(x). Of course since which contradicts the fact that $\bar{f}(x)$ is irreducible over \mathbb{Z}_p .

(e) **Theorem (Eisenstein's Criterion):** Suppose we have:

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$$

If we can find a prime p such that $p \nmid a_n$, $p \mid a_{n-1}, ..., p \mid a_0, p^2 \nmid a_0$ then f(x) is irreducible over \mathbb{Q} .

Example: The polyomial $6x^5 + 5x^4 - 25x^3 + 15x + 10$ is irreducible over \mathbb{Q} using the prime p = 5.

Proof: Suppose such a p exists but f(x) is reducible over \mathbb{Q} . We know then that it is reducible over \mathbb{Z} and so f(x) = g(x)h(x) with $g(x) = b_ix^i + \ldots + b_1x + b_0$ and $g(x) = c_jx^j + \ldots + c_1x + c_0$ with $1 \le i < n$ and $1 \le j < n$. Since $a_0 = b_0c_0$ and since $p \mid a_0$ but $p_0^2 \nmid a_0$ we have either $p \mid b_0$ or $p \mid c_0$ but not both. Without loss of generality assume $p \mid b_0$ and $p \nmid c_0$. Since $a_n = b_ic_j$ and since $p \nmid a_n$ we know $p \nmid b_i$ and so there is a smallest index $m \le i < n$ with $p \nmid b_m$. Consider that:

$$a_m = b_0 c_m + b_1 c_{m-1} + \dots + b_{m-1} c_1 + b_m c_0$$

Since $p \mid a_m$ and $p \mid b_0, \dots, p \mid b_{m-1}$ we must have $p \mid b_m c_0$ which contradicts the fact that $p \nmid b_m$ and $p \nmid c_0$.

3. Connection to Quotient Rings

(a) **Theorem:** Let F be a field and let $p(x) \in F[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in F[x] iff p(x) is irreducible over F.

Proof:

 \implies : Suppose $\langle p(x) \rangle$ is a maximal ideal in F[x]. We know that $p(x) \neq 0$ and p(x) is not a unit since neither $\{0\}$ nor $\langle \text{unit} \rangle = F[x]$ is a maximal ideal in F[x]. Let p(x) = g(x)h(x) be a factorization. Then $\langle p(x) \rangle \subseteq \langle g(x) \rangle \subseteq F[x]$ and since $\langle p(x) \rangle$ is maximal we either have $\langle g(x) \rangle = \langle p(x) \rangle$ or $\langle g(x) \rangle = F[x]$. In the first case we get $\deg(g(x)) = \deg(p(x))$ by a previous theorem (they both have minimal and therefore equal degree) and in the second case we get $\deg(g(x)) = 0$ and so $\deg(h(x)) = \deg(p(x))$. Thus p(x) is irreducible.

 \Leftarrow : Suppose that p(x) is irreducible over F. Let I be an ideal with $\langle p(x) \rangle \subseteq I \subseteq F[x]$. Because F[x] is a PID we know that $I = \langle g(x) \rangle$ for some $g(x) \in F[x]$ and so $p(x) \in \langle g(x) \rangle$ and hence p(x) = g(x)h(x) for some $h(x) \in F[x]$. Since p(x) is irreducible either g(x) or h(x) is a constant. In the first case I = F[x] and in the second case $I = \langle p(x) \rangle$. QED **Note:** This can be used to construct desired fields. If we want a field with 7 elements we can use \mathbb{Z}_7 but if we want a field with 27 elements we cannot use \mathbb{Z}_{27} because it is not a field (why not?)

But we can construct one when this new theorem is coupled with a theorem from earlier in the class which stated:

An ideal I of a ring R is maximal $\Leftrightarrow R/I$ is a field.

It follows that we can say that given a field F:

 $p(x) \in F[x]$ is irreducible over $F \Leftrightarrow \langle p(x) \rangle$ is maximal $\Leftrightarrow F[x]/\langle p(x) \rangle$ is a field.

Consider that we showed that $p(x) = x^3 + x^2 + x + 2$ is irreducible over \mathbb{Z}_3 and hence $\mathbb{Z}_3[x]/\langle x^3 + x^2 + x + 2 \rangle$ is a field. Elements in this field have the form $ax^2 + bx + c + \langle x^3 + x^2 + x + 2 \rangle$ with $a, b, c \in \mathbb{Z}_3$ (why?) and there are 27 such elements.

(b) **Corollary:** Let F be a field and let $p(x), a(x), b(x) \in F[x]$. If p(x) is irreducible over F and if $p(x) \mid a(x)b(x)$ then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

Note: This is a generalization of the notion from number theory (that we've used) that if a prime $p \mid ab$ then $p \mid a$ or $p \mid b$.

Proof: Since p(x) is irreducible $F[x]/\langle p(x)\rangle$ is a field and hence an integral domain. Then $\langle p(x)\rangle$ is a prime ideal and since $p(x) \mid a(x)b(x)$ we have $a(x)b(x) \in \langle p(x)\rangle$ and so one of them is in $\langle p(x)\rangle$. The result follows. QED