1. Introduction: In terms of structures we've basically gone from rings in general to integral domains to fields. However within integral domains there is a lot of interesting variation.

2. Associates, Irreducibles, and Primes

(a) Definition: Suppose D is an integral domain and $a, b \in D$. Then a and b are associates if $a=u b$ for some unit u.
Example: In $\mathbb{Z}, a=5$ and $b=-5$ are associates because $5=(-1)(-5)$ and -1 is a unit.
Example: In \mathbb{Q} every pair of nonzero rationals are associates.
Example: In $\mathbb{Z}[i], a=-1+i$ and $b=1+i$ are associates because $-1+i=(i)(1+i)$ and i is a unit.
(b) Definition: Suppose D is an integral domain and $a \in D$ is a nonzero non-unit. Then a is a reducible if we may write $a=b c$ for $b, c \in D$ and neither b nor c a unit. Conversely a is an irreducible if whenever we write $a=b c$ with $b c \in D$ then one of b or c must be a unit.
Note: The term reducible is not used in the book but I like it, so I'm using it.
Example: In $\mathbb{Z}, a=-6$ is reducible because $-6=(2)(-3)$ and neither 2 nor -3 is a unit.
Example: In $\mathbb{Z}, a=-7$ is irreducible because we can only write $-7=(-1)(7)$ or $-7=(1)(-7)$ and in both cases one is a unit.
(c) Definition: Suppose D is an integral domain and $a \in D$ is a nonzero non-unit. Then a is prime if whenever $a \mid b c$ for $b, c \in D$ we must have $a \mid b$ or $a \mid c$.
Example: In $\mathbb{Z}, a=6$ is not prime because $6 \mid(3)(4)$ but $6 \nmid 3$ and $6 \nmid 4$.
Example: In $\mathbb{Z}[\sqrt{-3}]$ the element $1+\sqrt{-3}$ is not prime. To see this, observe that $1+\sqrt{-3} \mid(2)(2)$ because $(1+\sqrt{-3})(1-\sqrt{-3})=4$ However $1+\sqrt{-3} \nmid 2$ because if it did we would have some $a+b \sqrt{-3}$ with $(1+\sqrt{-3})(a+b \sqrt{-3})=2$. FOILing the left and solving for a, b shows that no such $a, b \in \mathbb{Z}$ exist.

Note: Be careful. In \mathbb{Z}^{+}the term prime is used instead of irreducible and the term irreducible is not used. This is because the two mean the same thing in \mathbb{Z}^{+}. However in general they don't. Specifically the following two theorems clarify:
(d) Theorem: In an integral domain every prime is irreducible.

Proof: Suppose $a \in D$ is prime and $a=b c$. We claim that one of b, c is a unit. Since $a=b c$ we know $a \mid b c$ and since a is prime without loss of generality let's say $a \mid b$. Then $b=a \alpha$ for some $\alpha \in D$, so then $b=a \alpha=b c \alpha$ and then we cancel the b (which we may do in an integral domain) to get $1=c \alpha$ so that c is a unit.
$\mathcal{Q E D}$
(e) Theorem: In a principal ideal domain every irreducible is prime.

Proof: Suppose $a \in D$ is irreducible and $a \mid b c$. We claim $a \mid b$ or $a \mid c$. Consider the ideal $\langle a, b\rangle$. Since D is a PID we then have $\langle a, b\rangle=\langle d\rangle$ for some $d \in D$. Since $a \in\langle a, b\rangle=\langle d\rangle$ we have $a=d \alpha$ for some $\alpha \in D$ and since a is irreducible either d or α is a unit.
If d is a unit then $\langle a, b\rangle=\langle d\rangle=D$ and so $1=a x+b y$ for some $x, y \in D$ so then $c=a c x+b c y$. Then since $a \mid a c x$ and $a \mid b c y$ we have $a \mid c$.
If α is a unit then $\langle a\rangle=\langle d\rangle=\langle a, b\rangle$ and so we have $b=a \beta$ for some $\beta \in D$ so then $a \mid b$ $\mathcal{Q E D}$
Note: The ring \mathbb{Z} is a PID (can you prove this?) which is why the terms irreducible and prime can be used interchangeably.

To help look at some more interesting integral domains it can be helpful to define the norm:
(f) Definition: Let $d \in \mathbb{Z}$ with $d \neq 1$ and d is square-free (not divisible by any square). In the integral domain $\mathbb{Z}[\sqrt{d}]$ we define the norm by $N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|$. It is fairly straightfoward to show that:

- $N(x)=0$ iff $x=0$.
- $N(x y)=N(x) N(y)$.
- $N(x)=1$ iff x is a unit.

Note that N maps to \mathbb{Z}^{+}and so the behavior is predictable in the range as we see in this next example.
Example: In $\mathbb{Z}[\sqrt{-3}]$ the element $1+\sqrt{-3}$ is irreducible. To see this suppose that $1+\sqrt{-3}=x y$ with neither x nor y a unit. Then $N(x) N(y)=N(x y)=N(1+\sqrt{-3})=4$ and since both $N(x), N(y) \in \mathbb{Z}^{+}$we must have $N(x)=N(y)=2$ (since x and y are not units). If $x=a+b \sqrt{-3}$ then $N(a+b \sqrt{-3})=a^{2}+3 b^{2}=2$ which is impossible for $a, b \in \mathbb{Z}$.

3. Unique Factorization Domains

(a) Definition: An integral domain D is a unique factorization domain (UFD) if every nonzero non-unit in D can be written as a product of irreducibles in D and the factorization is unique up to order and associates.
Note: The prototypical example is \mathbb{Z}. In \mathbb{Z}^{+}we are well-aware that we can uniquely factor up to order, for example $315=(3)(3)(5)(7)$ and all of $3,5,7$ are irreducible (same as prime in \mathbb{Z}). Extending to \mathbb{Z} just means we can swap out irreducibles with associates, for example $315=(-3)(3)(-5)(7)$, and we wouldn't consider it different. Also we wouldn't consider $315=(3)(3)(5)(7)(1)(-1)(-1)$ different, either.
Example: $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. Observe that $6=(2)(3)=(1+\sqrt{-5})(1-\sqrt{-5})$. This is not crazy obvious, we need to show that both factorizations are into irreducibles and that the two factorizations are not up to associates.
(b) Theorem: Every PID is a UFD.

Proof: Omit, lengthy.
$\mathcal{Q E D}$
(c) Corollary: If F is a field then $F[x]$ is a UFD.

Proof: We proved that $F[x]$ is a PID and then the result follows.
$\mathcal{Q E D}$

