1. **Introduction**: An extremely basic notion of a group is a collection of objects and a way to combine them. There is of course a more formal definition as well as requirements but before nailing down the specifics here are some examples:

- **Example**: We could take the integers with addition. If we add two integers we get another integer.
- **Example**: We could take the various ways to switch the objects in three boxes with the notion of doing one switch and then another. If we do two switches the result is a switch.

2. **Definition(s)**: A group \(G \) is a set of objects (sometimes also sloppily denoted \(G \)) and a binary operation \(* \) (not necessarily multiplication) which takes two objects in \(G \), say \(a \) and \(b \), and creates a new object \(a * b \) which is also in \(G \) (this is called closure). Moreover we must have:

 (a) **Associativity**: For any \(a, b, c \in G \) we have \((a * b) * c = a * (b * c)\).

 (b) **Identity**: There is some \(e \in G \) such that for all \(a \in G \) we have \(e * a = a * e = a \). There is no assumption that this is unique!

 (c) **Inverses**: For every \(a \in G \) there is some \(b \in G \) with \(a * b = b * a = e \). There is no assumption that this is unique!

A word on notation. Often in the abstract we write \(ab \) instead of \(a * b \) and this is usually fine, especially when \(* \) is actually multiplication or something unambiguous. However if \(* \) is addition then we should write \(a + b \) instead of \(ab \). When we do use \(ab \) notation then sometimes instead of \(e \) we write \(1 \) but this only sometimes makes sense.

3. **Abelian Groups**: Note that there is no guarantee that \(a * b = b * a \) for all \(a, b \in G \). When this is true we say the group is **Abelian**, or **commutative**.

4. **Examples and Non-Examples**: Here are some examples and non-examples:

 - **Example**: The structure \(G = (\mathbb{Z}, +) \) is an Abelian group.
 - **Example**: The structure \((\mathbb{Z}, -) \) is not a group. Why not?
 - **Example**: The structure \(G = (\{1, 3, 5, 7\}, \cdot \mod 8) \) is an Abelian group.
 - **Example**: The structure \(G = (GL_2 \mathbb{R}, \cdot) \) is a group but is not Abelian.
 - **Example**: The structure \((\mathbb{R}, \cdot) \) is not a group.
 - **Example**: The structure \(G = (\mathbb{R} - \{0\}, \cdot) \) is an Abelian group.

5. **Elementary Properties**: The following are properties of a group. Notice that they’re not part of the definition, rather they follow automatically from the definition.

 (a) **Theorem**: The identity is unique.

 Proof: Suppose \(e_1, e_2 \) are both identities. Then \(e_1 e_2 = e_1 \) and \(e_1 e_2 = e_2 \) so then \(e_1 = e_2 \).

 (b) **Theorem**: The left and right cancellation laws hold.

 Proof: Suppose \(ab = ac \). Left multiply by an inverse of \(a \). Note that sometimes this is stated for non-identity \(a \) but it’s fine for \(a = e \) too, the point being that if \(a = e \) then \(ab = ac \) becomes \(b = c \) without any cancellation at all.

 (c) **Theorem**: Inverses are unique.

 Proof: Suppose \(b_1, b_2 \) are both inverses of \(a \). Then \(ab_1 = e = ab_2 \) then cancel the \(a \).

 Note: Now we can use \(a^{-1} \) for the inverse of \(a \).

 (d) **Theorem**: The shoes-socks property holds.

 Proof: We wish to solve \((ab)(?) = e\). Note \(abb^{-1}a^{-1} = e \).