## Math 403 Chapter 2: Groups

1. Introduction: An extremely basic notion of a group is a collection of objects and a way to combine them. There is of course a more formal definition as well as requirements but before nailing down the specifics here are some examples:
Example: We could take the integers with addition. If we add two integers we get another integer.
Example: We could take the various ways to switch the objects in three boxes with the notion of doing one switch and then another. If we do two switches the result is a switch.
2. Definition(s): A group $G$ is a set of objects (sometimes also sloppily denoted $G$ ) and a binary operation * (not necessarily multiplication) which takes two objects in $G$, say $a$ and $b$, and creates a new object $a * b$ which is also in $G$ (this is called closure). Moreover we must have:
(a) Associativity: For any $a, b, c \in G$ we have $(a * b) * c=a *(b * c)$.
(b) Identity: There is some $e \in G$ such that for all $a \in G$ we have $e * a=a * e=a$. There is no assumption that this is unique!
(c) Inverses: For every $a \in G$ there is some $b \in G$ with $a * b=b * a=e$. There is no assumption that this is unique!

A word on notation. Often in the abstract we write $a b$ instead of $a * b$ and this is usually fine, especially when $*$ is actually multiplication or something unambiguous. However if $*$ is addition then we should write $a+b$ instead of $a b$. When we do use $a b$ notation then sometimes instead of $e$ we write 1 but this only sometimes makes sense.
3. Abelian Groups: Note that there is no guarantee that $a * b=b * a$ for all $a, b \in G$. When this is true we say the group is Abelian, or commutative.
4. Examples and Non-Examples: Here are some examples and non-examples:

Example: The structure $G=(\mathbb{Z},+)$ is an Abelian group.
Example: The structure $(\mathbb{Z},-)$ is not a group. Why not?
Example: The structure $G=(\{1,3,5,7\}, \cdot \bmod 8)$ is an Abelian group.
Example: The structure $G=\left(G L_{2} \mathbb{R}, \cdot\right)$ is a group but is not Abelian.
Example: The structure $(\mathbb{R}, \cdot)$ is not a group.
Example: The structure $G=(\mathbb{R}-\{0\}, \cdot)$ is an Abelian group.
5. Elementary Properties: The following are properties of a group. Notice that they're not part of the definition, rather they follow automatically from the definition.
(a) Theorem: The identity is unique.

Proof: Suppose $e_{1}, e_{2}$ are both identities. Then $e_{1} e_{2}=e_{1}$ and $e_{1} e_{2}=e_{2}$ so then $e_{1}=e_{2}$. $\mathcal{Q E D}$
(b) Theorem: The left and right cancellation laws hold.

Proof: Suppose $a b=a c$. Left multiply by an inverse of $a$. Note that sometimes this is stated for non-identity $a$ but it's fine for $a=e$ too, the point being that if $a=e$ then $a b=a c$ becomes $b=c$ without any cancellation at all.
$\mathcal{Q E D}$
(c) Theorem: Inverses are unique.

Proof: Suppose $b_{1}, b_{2}$ are both inverses of $a$. Then $a b_{1}=e=a b_{2}$ then cancel the $a$. $\mathcal{Q E D}$
Note: Now we can use $a^{-1}$ for the inverse of $a$.
(d) Theorem: The shoes-socks property holds: For $a, b \in G$ we have $(a b)^{-1}=b^{-1} a^{-1}$. Proof: We wish to solve $(a b)(?)=e$. Note $a b b^{-1} a^{-1}=e$.
$\mathcal{Q E D}$
Note: We know that things like $\left(a^{2}\right)^{3}=\left(a^{3}\right)^{2}$ because both are $a^{6}$. The Shoes-Socks property allows us to extend this to inverses and write things like $\left(a^{2}\right)^{-1}=\left(a^{-1}\right)^{2}$. This is because:

$$
\left(a^{2}\right)^{-1}=(a a)^{-1}=a^{-1} a^{-1}=\left(a^{-1}\right)^{2}
$$

Without ambiguity we can then also write $a^{-2}$.
6. Closing Note: When the operation is obvious we'll sometimes not bother to write it. For example when talking about the set $\mathbb{Z}$ the standard way to create a group is to use + so often we'll write $G=\mathbb{Z}$ instead of $G=(\mathbb{Z},+)$.

