Math 403 Chapter 2: Groups

1. **Introduction:** An extremely basic notion of a group is a collection of objects and a way to combine them. There is of course a more formal definition as well as requirements but before nailing down the specifics here are some examples:

Example: We could take the integers with addition. If we add two integers we get another integer.

Example: We could take the various ways to switch the objects in three boxes with the notion of doing one switch and then another. If we do two switches the result is a switch.

- 2. **Definition(s):** A group G is a set of objects (sometimes also sloppily denoted G) and a binary operation * (not necessarily multiplication) which takes two objects in G, say a and b, and creates a new object a * b which is also in G (this is called *closure*). Moreover we must have:
 - (a) Associativity: For any $a, b, c \in G$ we have (a * b) * c = a * (b * c).
 - (b) *Identity:* There is some $e \in G$ such that for all $a \in G$ we have e * a = a * e = a. There is no assumption that this is unique!
 - (c) *Inverses:* For every $a \in G$ there is some $b \in G$ with a * b = b * a = e. There is no assumption that this is unique!

A word on notation. Often in the abstract we write ab instead of a * b and this is usually fine, especially when * is actually multiplication or something unambiguous. However if * is addition then we should write a + b instead of ab. When we do use ab notation then sometimes instead of e we write 1 but this only sometimes makes sense.

- 3. Abelian Groups: Note that there is no guarantee that a * b = b * a for all $a, b \in G$. When this is true we say the group is *Abelian*, or *commutative*.
- 4. Examples and Non-Examples: Here are some examples and non-examples: Example: The structure $G = (\mathbb{Z}, +)$ is an Abelian group. Example: The structure $(\mathbb{Z}, -)$ is not a group. Why not? Example: The structure $G = (\{1, 3, 5, 7\}, \cdot \mod 8)$ is an Abelian group. Example: The structure $G = (GL_2\mathbb{R}, \cdot)$ is a group but is not Abelian. Example: The structure (\mathbb{R}, \cdot) is not a group. Example: The structure $G = (\mathbb{R} - \{0\}, \cdot)$ is an Abelian group.
- 5. Elementary Properties: The following are properties of a group. Notice that they're not part of the definition, rather they follow automatically from the definition.
 - (a) Theorem: The identity is unique.
 Proof: Suppose e₁, e₂ are both identities. Then e₁e₂ = e₁ and e₁e₂ = e₂ so then e₁ = e₂.
 QED
 - (b) **Theorem:** The left and right cancellation laws hold. **Proof:** Suppose ab = ac. Left multiply by an inverse of a. Note that sometimes this is stated for non-identity a but it's fine for a = e too, the point being that if a = e then ab = ac becomes b = c without any cancellation at all. \mathcal{QED}
 - (c) **Theorem:** Inverses are unique. **Proof:** Suppose b_1, b_2 are both inverses of a. Then $ab_1 = e = ab_2$ then cancel the a. QED

Note: Now we can use a^{-1} for the inverse of a.

(d) **Theorem:** The shoes-socks property holds: For $a, b \in G$ we have $(ab)^{-1} = b^{-1}a^{-1}$. **Proof:** We wish to solve (ab)(?) = e. Note $abb^{-1}a^{-1} = e$. Note: We know that things like $(a^2)^3 = (a^3)^2$ because both are a^6 . The Shoes-Socks property allows us to extend this to inverses and write things like $(a^2)^{-1} = (a^{-1})^2$. This is because:

$$(a^2)^{-1} = (aa)^{-1} = a^{-1}a^{-1} = (a^{-1})^2$$

Without ambiguity we can then also write a^{-2} .

6. Closing Note: When the operation is obvious we'll sometimes not bother to write it. For example when talking about the set \mathbb{Z} the standard way to create a group is to use + so often we'll write $G = \mathbb{Z}$ instead of $G = (\mathbb{Z}, +)$.