
Math 403 Chapter 20: Extension Fields

1. Introduction: The idea of the final few chapters is to dig a bit deeper into fields, specifically
the idea that if a field F is contained inside a field E that things may happen in E[x] that
cannot happen in F [x]. For example R ⊆ C and if we take p(x) = x2 + 4 ∈ R[x] this does not
factor in R[x] but does factor in C[x].

2. An Extension Field with a Root - Part 1

(a) Introduction: First we’ll take a look at the question of taking a polynomial p(x) ∈ F [x]
which is irreducible over F and finding a “larger” field in which p(x) has a root, meaning
a linear factor. We then go on to look at what that larger field must look like.

(b) Definition: A field E is an extension field of a field F if F is a subfield of E.

Example: An example of a field extension is Q ⊆ R. Another is R ⊆ C.

(c) Important Note: We’ll use the term “extension field” somewhat liberally when F is
not necessarily directly contained in E but rather is isomorphic to a subfield of E. For
example R[x]/

〈
x2 + 1

〉
is a field and although R is not really a subfield (or even a subset)

of R[x]/
〈
x2 + 1

〉
we can treat it as such by noting that

R = {α |α ∈ R} ≈
{
α+

〈
x2 + 1

〉
|α ∈ R

}
⊆ R[x]/

〈
x2 + 1

〉



(d) Theorem (Fundamental Theorem of Field Theory): Let F be a field and f(x) ∈
F [x] be a nonconstant polynomial. Then there is an extension field of F in which f(x)
has a root.

Proof: Since F [x] is a UFD we can factor f(x) into irreducible factors. Write f(x) =
p(x)q(x) where p(x) is an irreducible factor. We claim that F [x]/ 〈p(x)〉 is an extension
field with the desired property.

Since p(x) is irreducible we know from a previous theorem that 〈p(x)〉 is maximal and
F [x]/ 〈p(x)〉 is a field.

The mapping F → F [x]/ 〈p(x)〉 given by α 7→ α+ 〈p(x)〉 is 1-1 because α+ 〈p(x)〉 = β +

〈p(x)〉 implies p(x)
∣∣∣(β−α) implies β−α = 0 and operation preserving (by construction).

and therefore yields an isomorphism of F to a subfield of F [x]/ 〈p(x)〉.

In this way we can think of F [x]/ 〈p(x)〉 as an extension field of F .

To show that f(x) has a root in F [x]/ 〈p(x)〉 observe that since p(x) is a polyomial we
have

f (x+ 〈p(x)〉) = p (x+ 〈p(x)〉) q (x+ 〈p(x)〉)
= (p(x) + 〈p(x)〉) q (x+ 〈p(x)〉)
= (0 + 〈p(x)〉) q (x+ 〈p(x)〉)
= 0 + 〈p(x)〉

QED
Example: Consider f(x) = x2 +1 ∈ Q[x]. Since f(x) itself is irreducible over Q we know
that f(x) has a root in the extension field Q[x]/

〈
x2 + 1

〉
.

Example: Consider f(x) = x4 + 8x2 + 15 ∈ Q[x]. Since f(x) = (x2 + 3)(x2 + 5) each of
which is irreducible over Q we know that f(x) has a root in each of the extension fields
Q[x]/

〈
x2 + 3

〉
and Q[x]/

〈
x2 + 5

〉
.

Example: Consider f(x) = x5 + 2x2 + 2x + 2 ∈ Z3[x]. Since f(x) = (x2 + 1)(x3 +
2x+ 2) each of which is irreducible over Z3 (by the Degree 2/3 Test) we know that f(x)
has a root in each of the extension fields Z3[x]/

〈
x2 + 1

〉
(a field with 9 elements) and

Z3[x]/
〈
x3 + 2x+ 2

〉
(a field with 27 elements).



3. An Extension Field with a Root - Part 2

(a) Introduction: So the Fundamental Theorem of Field Theory states that we can always
extend a field in order to pick up a root, but as we’ve seen this is not the only way. For
example when we started with x2 + 1 ∈ Q[x] we could simply have used the extension
field Q[i]. Would this have been different in a meaningful sense?

(b) Definition: Suppose E is an extension field of F and a1, ..., an ∈ E. Denote by
F (a1, ..., an) the smallest subfield of E containing both F and all of the ai.

Example: We know that R is an extension field of Q and
√

2 ∈ R. We can then create
Q(
√

2) as the smallest subfield of R containing both Q and
√

2.

(c) Theorem: Let F be a field and p(x) ∈ F [x] be irreducible over F . Suppose a is a root
of p(x) in some extension E of F . Then we have:

i. F [x]/ 〈p(x)〉 ≈ F (a)

ii. Every element in F (a) can be uniquely expressed in the form

cn−1a
n−1 + ...+ c1a+ c0 withci ∈ F

Note: This theorem basically states that extending the field via the Fundamental The-
orem and extending the field by taking the smallest subfield approach yield isomorphic
results. However the latter requires that we have an extension field with our root a in it
to begin with.

Example: For example x2 + 2 ∈ R[x] is irreducible over R. Observe that
√
−2 is a root

of x2 + 2 in the C, an extension field of R. Then we get:

R[x]/
〈
x2 + 2

〉
≈ F (

√
−2)

And elements in F (
√
−2) can be expressed uniquely in the form:

c1
√
−2 + c0 withc1, c0 ∈ R

Proof:

i. Define φ : F [x] → F (a) by φ(f(x)) = f(a), then φ is a ring homomorphism and by
the First Isomorphism Theorem we have:

F [x]/Kerφ ≈ φ(F [x])

We claim that Kerφ = 〈p(x)〉. Since φ(p(x)) = p(a) = 0 we know 〈p(x)〉 ⊆ Kerφ
and since 〈p(x)〉 is maximal (since p(x) is irreducible over F ) and 1 6∈ Kerφ (since
φ(1) = 1 6= 0) we know that Kerφ 6= F [x] and hence Kerφ = 〈p(x)〉. So far this
proves:

F [x]/Ker 〈p(x)〉 ≈ φ(F [x])

Next we must show that φ(F [x]) = F (a).
By the definition of φ we know φ(F [x]) ⊆ F (a) so we’ll show that φ(F [x]) is a field
which contains F and a and then since F (a) is minimal we are done.

• φ(F [x]) is a field because the quotient ring is a field by the previous theorem.

• F ⊆ φ(F [x]) because for any α ∈ F we have φ(α) = α and a ∈ φ(F [x]) because
φ(x) = a.

ii. The second result follows from the fact that the elements in F [x]/ 〈p(x)〉 can be
expressed uniquely in the form

cn−1x
n−1 + ...+ c0 + 〈p(x)〉

with ci ∈ F as we have seen in several examples and the isomorphism φ above maps
such an element to cn−1a

n−1 + ...+ c0.

QED



Example: Given f(x) = x2 + 2 ∈ Q[x] and irreducible over Q we know that
√
−2 ∈ C,

an extension field of Q, and therefore:

Q(
√
−2) ≈ Q[x]/

〈
x2 + 2

〉
and moreover:

Q(
√
−2) =

{
c1
√
−2 + c0 | ci ∈ Q

}
Example: Given f(x) = x3 − 5 ∈ Q[x] and irreducible over Q we know that 3

√
5 ∈ R, an

extension field of Q, and therefore:

Q(
3
√

5) ≈ Q[x]/
〈
x3 − 5

〉
and moreover:

Q(
3
√

5) =
{
c2(

3
√

5)2 + c1(
3
√

5) + c0 | ci ∈ Q
}

Example: We can’t always play this game since we have to know about an extension
field already in order to build F (a). For example f(x) = x5 + 2x2 + 2x + 2 ∈ Z3[x] is
irreducible over Z3 but other than using the quotient field approach we have no knowledge
about any other extension field Z3 ⊆ E in which there is a root a ∈ E with which to
construct Z3(a)

Note: In general F (a, b) = F (a)(b), so for example Q(
√

2,
√

3) = Q(
√

2)(
√

3) which is
then the field of expressions of the form:

Q(
√

2,
√

3) =
{

(a
√

2 + b)
√

3 + (c
√

2 + d) | a, b, c, d ∈ Q
}

which may be rewritten as:

Q(
√

2,
√

3) =
{
a
√

6 + b
√

3 + c
√

2 + d | a, b, c, d ∈ Q
}

(d) Corollary: Let F be a field and p(x) ∈ F [x] be irreducible over F . If b is a root of
p(x) in some extension E1 of F and if a is a root of p(x) in some extension E2 of F then
F (a) ≈ F (b).
Proof: Follows immediately since F (a) ≈ F [x]/ 〈p(x)〉 ≈ F (b). QED



4. Splitting and Splitting Fields

(a) Introduction: By the Fundamental Theorem of Field Theory we know that given p(x) ∈
F [x] which is irreducible over F we can extend F to a field extension E to pick up a root,
and hence a linear factor, we might wonder about extending F so that it picks up all
roots and so p(x) factors completely into linears.

(b) Definition: Let E be an extension field of F and let f(x) ∈ F [x] be a nonconstant
polynomial. We say that f(x) splits in E if there are elements a ∈ F and a1, ..., an ∈ E
such that:

f(x) = a(x− a1)...(x− an)

Note: The a ∈ F is just there to basically say we can factor out the leading coefficient
first. Almost always we’ll deal with polynomials in which the leading coefficient is 1.

Note: The phrase “splits in E” is standard but confusing. A better phrase might be
“splits in E[x]” or “splits over E”.

(c) Definition: Given a field F and a polynomial f(x) ∈ F [x], an extension field E of F is
a splitting field for f(x) over F if f(x) splits in E does not split in any proper subfield of
E containing F .

Note: The basic idea is that a splitting field is an extension field into which the polyno-
mial splits but it does not split in a smaller subfield.

Example: The polynomial x2 − 2 ∈ Q[x] splits in C since x2 = (x +
√

2)(x −
√

2) and
both (x +

√
2), (x −

√
2) ∈ C[x]. Of course it splits in R as well, and also in Q(

√
2). In

fact since the extension must contain the roots we know by definition that Q(
√

2) is the
smallest such extension field and is therefore a splitting field.

Note: Splitting fields are not necessarily unique. We know Q(
√

2) ≈ Q[x]/
〈
x2 − 2

〉
and

so Q[x]/
〈
x2 − 2

〉
is also a splitting field for x2−2 over Q. However this is a different (yet

isomorphic) field extension than Q(
√

2).



(d) Theorem (Existence of Splitting Fields): Let F be a field and f(x) ∈ F [x] be a
nonconstant polynomial. Then there exists a splitting field E of f(x) over F .
Note: We’ll assume f(x) has leading coefficient 1, if not, just factor the leading coefficient
first and deal with the rest.
Proof: By induction on the degree of f(x). If the degree of f(x) is 1 then f(x) is linear
and f(x) is already split into one term. Suppose the statement is true for all polynomials
of degree less than the degree of f(x). By the Fundamental Theorem of Field Theory
there is an extension field E of F in which f(x) has a root, hence we get a linear term and
so f(x) = (x− a1)g(x) where a1 ∈ E and g(x) ∈ E[x]. By the induction hypothesis then
we have an extension field K of E in which g(x) splits as g(x) = (x− a2)...(x− an) and
so we see that f(x) splits over K as well, since f(x) = (x − a1)(x − a2)...(x − an). This
K may not be a splitting field however we can obtain a splitting field by simply taking
F (a1, ..., an). QED

(e) Theorem (Uniqueness of Splitting Fields up to Isomorphism): Let F be a field
and f(x) ∈ F [x]. Then any two splitting fields of f(x) over F are isomorphic.

Before proving this, two lemmas:

Lemma: Suppose φ : F1 → F2 is a field isomorphism. Let p(x) ∈ F1[x] be irreducible
over F1 and suppose a1 is a root of p(x) in an extension field of F1 and suppose a2 is
a root of φ(p(x)) in an extension field of F2. Then we can extend φ to an isomorphism
from F1(a1) to F2(a2) which takes a1 to a2.

Proof: Since p(x) is irreducible over F1 we know that φ(p(x)) is irreducible over F2. The
mapping:

ψ : F1[x]/ 〈p(x)〉 → F2[x]/ 〈φ(p(x))〉

defined by
ψ (f(x) + 〈p(x)〉) = φ(f(x)) + 〈φ(p(x))〉

is a field isomorphism (check!) so then consider that we have a compound field isomor-
phism:

F1(a1)→ F1[x]/ 〈p(x)〉 → F2[x]/ 〈φ(p(x))〉 → F2(a2)

where the first and third isomorphisms result from the Fundamental Theorem of Field
Theory. Note that:

a1 7→ x+ 〈p(x)〉 7→ φ(x) + 〈φ(p(x))〉 7→ a2

and note that for α ∈ F1 that:

α 7→ α+ 〈p(x)〉 7→ φ(α) + 〈φ(p(x))〉 7→ φ(α)

QED
Lemma: Suppose φ : F1 → F2 is a field isomorphism. Let f(x) ∈ F1[x]. Suppose E1 is
a splitting field for f(x) over F1 and if E2 is a splitting field for φ(f(x)) over F2. Then
we can extend φ to an isomorphism from E1 to E2.

Proof: We induct on the degree of f(x) by taking irreducible factors of p(x) and using
the previous lemma to extend E1 progressively to pick up all the roots. Details omitted.
QED
Proof of Theorem: Follows immediately from the previous lemma using F1 = F2 = F
and letting φ be the identity. QED



Example: In the case of f(x) = x2−2 ∈ Q[x] and irreducible over Q we know about two
splitting fields, those being Q(

√
2) and Q[x]/

〈
x2 − 2

〉
, and we already know that those

are isomorphic. This theorem states that any others would also need to be isomorphic.

Example: Consider f(x) = x2 + 1 ∈ Z3[x] which is irreducible over Z3.

Consider:

• The set:
Z3[i] = {a+ bi | a, b ∈ Z3}

is in fact an extension field of Z3 (can you show it’s a field?). In this field f(x) splits
since x2 +1 = (x+ i)(x+2i) and (x+ i), (x+2i) ∈ Z3[i][x]. (Note that Z3[i][x] means
polynomials with coefficients in Z3[i].) In fact there is no smaller subfield of Z3[i]
containing Z3 in which f(x) splits (can you show this?) and so Z3[i] is a splitting
field for f(x) over Z3.

• By the FTOFT f(x) has a root, hence a linear factor, hence splits, in the extension
field:

Z3[x]/
〈
x2 + 1

〉
=
{
a+ bx+

〈
x2 + 1

〉
| a, b ∈ Z3

}
In fact there is no smaller subfield of Z3[x]/

〈
x2 + 1

〉
containing (an isomorphic copy

of) Z3 in which f(x) splits and so Z3[x]/
〈
x2 + 1

〉
is a splitting field for f(x) over Z3.

Z3[i] ≈ Z3[x]/
〈
x2 + 1

〉
Note: We can’t write Z3(i) to begin with because this requires us to start with an
extension field of Z3 which contains i, and there is no obvious choice. However now that
we know that Z3[i] is an extension field of Z3 containing i then we can write Z3(i) with
this context.


