
Math 403 Chapter 21: Algebraic Extensions

1. Introduction: Extension fields may be categorized several different ways. In this chapter we
will look at some of these divisions.

2. Algebraic v Transcendental

(a) Definition: Given an extension field E of F and an element a ∈ E, we say that a is
algebraic over F if a is the root of a polynomial in F . Otherwise we say it is transcendental
over F .

Note: The base field F is important here. Often when people just say “transcendental”
they mean over Q but that isn’t the only possibility.

Example:
√

2 ∈ R ⊇ Z is algebraic over Z because it is a root of the polynomial x2 − 2 ∈
Z[x].

Example:
√

2 +
√

3 ∈ R ⊇ Z is algebraic over Z because it is a root of the polynomial
x4 − 4x2 + 1 ∈ Z[x].

Example: π ∈ R ⊇ Z is transcendental over Z because there is no polynomial in Z[x] for
which π is a root. This is hard to prove.

Example: π ∈ C ⊃ R is algebraic over R because it is a root of the polynomial x−π ∈ R[x].

(b) Definition: An extension field E of F is called an algebraic extension of F if every element
of E is algebraic over F . Otherwise we say it is a transcendental extension of F .

(c) Definition: An extension field of the form F (a) is a simple extension of F .

3. Algebraic Extensions

(a) Introduction: Here we will focus specifically on a theorem related to algebraic extensions.
It basically revisits something we know but from an opposite direction.

(b) Theorem: Let E be an extension field of F and let a ∈ E. If a is algebraic over F
then F (a) ≈ F [x]/ 〈p(x)〉 where p(x) is a polynomial in F [x] of minimal degree for which
p(a) = 0. In addition such a p(x) will be irreducible over F .

Note: This isomorphism arose earlier in the FTOFT but in that case we started with an
irreducible polynomial and constructed an extension field in which a root existed whereas
in this case we starting with an extension field that we know about and a root in that
extension field and an irreducible polynomial emerges.

Proof: If a is algebraic over F then define φ : F [x] → F (a) by φ(f(x)) = f(a). By the
First Isomorphism Theorem we know that

F [x]/Kerφ ≈ φ(F [x]) ⊆ F (a)

Since a is algebraic over F there are f(x) ∈ F [x] with f(a) = 0 and so Kerφ 6= 0. Thus
we know that Kerφ is a nonzero ideal of F [x] which can be written in the form 〈p(x)〉
(since F [x] is a PID) where p(x) is a polynomial of minimal degree in the ideal (previous
theorem). Since p(x) has minimal degree it must be irreducible since if we could reduce
p(x) = f(x)g(x) then 0 = p(a) = f(a)g(a) would imply a polynomial of lower degree for
which a were a root.

Now then since p(x) is irreducible we know that 〈p(x)〉 is maximal (previous theorem) and
hence F [x]/ 〈p(x)〉 is a field (prevous theorem) and since F [x]/ 〈p(x)〉 ≈ φ(F [x]) we know
that φ(F [x]) is a subfield of F (a) containing both F (since φ(c) = c for c ∈ F ) and a (since
φ(x) = a). But F (a) is the smallest such subfield and so φ(F [x]) = F (a) and the result
follows. QED



Example: Consider
√

2 ∈ R ⊇ Q is algebraic over rationals, since it’s a root of, among
other things, x2−2 ∈ Q[x], and so Q(

√
2) ≈ F [x]/ 〈p(x)〉 where p(x) is a polynomial in Q[x]

of minimal degree which is irreducible over Q. In fact we know that Q(
√

2) ≈ F [x]/
〈
x2 − 2

〉
but in this new theorem we started with

√
2 and the theorem proves the existence of the

polynomial from the field extension rather than the other way around.

(c) Corollary: If a ∈ E ⊇ F is algebraic over F then there is a unique monic irreducible
polynomial in F [x] for which a is a root.

Proof: If p(x) is the polynomial arising in the previous proof then we can multiply by
the multiplicative inverse of the leading coefficient to get a monic irreducible polynomial.
To show it is unique suppose p1(x) 6= p2(x) were both monic irreducible polynomials of
minimal degree with p1(a) = p2(a) = 0. Then (p1 − p2)(x) would be a nonzero polynomial
of smaller degree for which a is a root. Now then either p1 − p2 itself is irreducible or it
has an irreducible factor which will also have a as a root. Either way we have a nonzero
polynomial of smaller degree for which a is a root, a contradiction. QED

(d) Definition: The polynomial arising in the previous theorem is called the minimal polyno-
mial for a over F .

(e) Corollary: If p(x) is the minimal polynomial for a ∈ E ⊇ F over F then for all f(x) ∈ F [x]
with f(a) = 0 we have p(x) | f(x) in F [x].

Proof: For any other f(x) ∈ F [x] with f(a) = 0 we know that f(x) ∈ Kerφ = 〈p(x)〉 with
the φ from the theorem. Then p(x) | f(x) by definition of 〈p(x)〉. QED

4. The Degree of an Extension

(a) Definition: Let E be an extension field of F . We say that E has degree n over F and
write [E : F ] = n if E has dimension n as a vector space over F . If [E : F ] is finite we say
that E is a finite extension of F and otherwise we say that E is an infinite extension of F .

Note: Basically (haha) if we can find a set B = {b1, ..., bn} taken from E such that
every element of E can be written uniquely as a linear combination of elements of B using
coefficients in E then B is the basis and [E : F ] = n is the dimension.

Example: We have [C : R] = 2 since {1, i} form a basis for C over reals because every
element of C can be written in the form a(1) + b(i) with a, b ∈ R.

Example: We have
[
Q( 3
√

2) : Q
]

= 3 because elements in Q( 3
√

2) have the unique form

c0 + c1
3
√

2 + a2( 3
√

2)2 with c0, c1, c2 ∈ Q by a previous theorem.

(b) Theorem: If E is a finite extension of F then each a ∈ E is algebraic over F and so E is
algebraic over F .

Proof: Suppose [E : F ] = n and a ∈ E. The set {1, a, ..., an} contains more than n
elements and hence is linearly dependent over F , meaning there are constants c0, ..., cn
with c0 + c1a+ ...+ cna

n = 0. Then a is a root of f(x) = c0 + c1x+ ...+ cnx
n and hence

is algebraic. QED
Note: The converse is false, for example Q(

√
2, 3
√

2, 4
√

2, ...) (forever!) is algebraic but not
finite. Do you see why?

(c) Theorem: If we have finite field extensions F ⊆ E ⊆ K then [K : F ] = [K : E][E : F ].

Proof: Omit. The details are just icky and unenlightening and the basic idea can be
captured with an example. QED
Example: Suppose we take Q and extend it to Q(

√
2) we have a degree 2 field extension

with basis {1,
√

2} in which all elements have the form a+ b
√

2 with a, b ∈ Q.

Suppose we then extend from Q(
√

2) to Q(
√

2)( 3
√

5) = Q(
√

2, 3
√

5). This is a degree 3 field
extension with basis {1,

√
5, (
√

5)2} in which all elements have the form c+ d
√

5 + e(
√

5)2

with c, d, e ∈ Q(
√

2).



Really then all elements in Q(
√

2, 3
√

5) have the form:

c+ d
√

5 + e(
√

5)2 = (a1 + b1
√

2) + (a2 + b2
√

2)
3
√

5 + (a3 + b3
√

2)(
3
√

5)2

= a1 + b1
√

2 + a2
3
√

5 + b2
√

2
3
√

5 + a3(
3
√

5)2 + b3
√

2(
3
√

5)2

Thus Q(
√

2, 3
√

5) is a degree 6 field extension of Q with basis:{
1,
√

2,
3
√

5,
√

2
3
√

5, (
3
√

5)2,
√

2(
3
√

5)2
}

Note that conceptually we could have extended it to Q( 3
√

5) first, and this leads to the
following diagram:

Q

Q(
√

2) Q( 3
√

5)

Q(
√

2, 3
√

5)

2 3

3 2

6

(d) Note: The theorem can also inform us about what field extensions are possible and whether
elements are or are not in field extensions.

Example: By the above example any field extension between Q and Q
(√

2, 3
√

5
)

must

have degree over Q which divides 6. This also tells us, for example, that 4
√

7 6∈ Q
(√

2, 3
√

5
)
.

This is because if it were then we would have:

Q ⊆ Q(
4
√

7) ⊆ Q
(√

2,
3
√

5
)

and hence: [
Q
(√

2,
3
√

5
)

: Q
]

︸ ︷︷ ︸
6

=
[
Q
(√

2,
3
√

5
)

: Q(
4
√

7)
]

︸ ︷︷ ︸
?

[
Q(

4
√

7) : Q
]

︸ ︷︷ ︸
4

However 4 - 6.



5. Final Theorems

(a) Theorem: If K is algebraic over E and E is algebraic over F then K is algebraic over F .

Proof: Let a ∈ K. Since K is algebraic over E there is some irreducible polynomial
p(x) = cnx

n + ...+ c1x+ c0 with ci ∈ E such that p(a) = 0. Consider now the diagram:

F

F (c0)

F (c0, c1)

...

F (c0, c1, ..., cn)

F (c0, c1, ..., cn, a) E

K

Since each ci is algebraic over F each field extension up until the split is finite. Moreover
the left branch is degree n and so a ∈ F (c0, c1, ..., cn, a) which is a finite extension over F .
Thus a is algebraic over F . QED

(b) Theorem: Let E be an extension field of F . Then the set of all elements in E which are
algebraic over F form a subfield of E.

Proof: Suppose a, b ∈ E are algebraic over F and b 6= 0. Consider that [F (a, b) : F ] =
[F (a, b) : F (b)][F (b) : F ] which is finite since a, b are algebraic. Thus since a + b, a −
b, ab, a/b ∈ F (a, b) we know that all four are in a finite extension of F and hence are
algebraic over F . Thus the set of elements in E which are algebraic over F form a subfield
of E.


