1. Introduction: Extension fields may be categorized several different ways. In this chapter we will look at some of these divisions.

2. Algebraic \mathbf{v} Transcendental

(a) Definition: Given an extension field E of F and an element $a \in E$, we say that a is algebraic over F if a is the root of a polynomial in F. Otherwise we say it is transcendental over F.
Note: The base field F is important here. Often when people just say "transcendental" they mean over \mathbb{Q} but that isn't the only possibility.
Example: $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Z}$ is algebraic over \mathbb{Z} because it is a root of the polynomial $x^{2}-2 \in$ $\mathbb{Z}[x]$.
Example: $\sqrt{2+\sqrt{3}} \in \mathbb{R} \supseteq \mathbb{Z}$ is algebraic over \mathbb{Z} because it is a root of the polynomial $x^{4}-4 x^{2}+1 \in \mathbb{Z}[x]$.
Example: $\pi \in \mathbb{R} \supseteq \mathbb{Z}$ is transcendental over \mathbb{Z} because there is no polynomial in $\mathbb{Z}[x]$ for which π is a root. This is hard to prove.
Example: $\pi \in \mathbb{C} \supset \mathbb{R}$ is algebraic over \mathbb{R} because it is a root of the polynomial $x-\pi \in \mathbb{R}[x]$.
(b) Definition: An extension field E of F is called an algebraic extension of F if every element of E is algebraic over F. Otherwise we say it is a transcendental extension of F.
(c) Definition: An extension field of the form $F(a)$ is a simple extension of F.

3. Algebraic Extensions

(a) Introduction: Here we will focus specifically on a theorem related to algebraic extensions. It basically revisits something we know but from an opposite direction.
(b) Theorem: Let E be an extension field of F and let $a \in E$. If a is algebraic over F then $F(a) \approx F[x] /\langle p(x)\rangle$ where $p(x)$ is a polynomial in $F[x]$ of minimal degree for which $p(a)=0$. In addition such a $p(x)$ will be irreducible over F.
Note: This isomorphism arose earlier in the FTOFT but in that case we started with an irreducible polynomial and constructed an extension field in which a root existed whereas in this case we starting with an extension field that we know about and a root in that extension field and an irreducible polynomial emerges.
Proof: If a is algebraic over F then define $\phi: F[x] \rightarrow F(a)$ by $\phi(f(x))=f(a)$. By the First Isomorphism Theorem we know that

$$
F[x] / \operatorname{Ker} \phi \approx \phi(F[x]) \subseteq F(a)
$$

Since a is algebraic over F there are $f(x) \in F[x]$ with $f(a)=0$ and so $\operatorname{Ker} \phi \neq 0$. Thus we know that $\operatorname{Ker} \phi$ is a nonzero ideal of $F[x]$ which can be written in the form $\langle p(x)\rangle$ (since $F[x]$ is a PID) where $p(x)$ is a polynomial of minimal degree in the ideal (previous theorem). Since $p(x)$ has minimal degree it must be irreducible since if we could reduce $p(x)=f(x) g(x)$ then $0=p(a)=f(a) g(a)$ would imply a polynomial of lower degree for which a were a root.
Now then since $p(x)$ is irreducible we know that $\langle p(x)\rangle$ is maximal (previous theorem) and hence $F[x] /\langle p(x)\rangle$ is a field (prevous theorem) and since $F[x] /\langle p(x)\rangle \approx \phi(F[x])$ we know that $\phi(F[x])$ is a subfield of $F(a)$ containing both F (since $\phi(c)=c$ for $c \in F$) and a (since $\phi(x)=a)$. But $F(a)$ is the smallest such subfield and so $\phi(F[x])=F(a)$ and the result follows.
$\mathcal{Q E D}$

Example: Consider $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Q}$ is algebraic over rationals, since it's a root of, among other things, $x^{2}-2 \in \mathbb{Q}[x]$, and so $\mathbb{Q}(\sqrt{2}) \approx F[x] /\langle p(x)\rangle$ where $p(x)$ is a polynomial in $\mathbb{Q}[x]$ of minimal degree which is irreducible over \mathbb{Q}. In fact we know that $\mathbb{Q}(\sqrt{2}) \approx F[x] /\left\langle x^{2}-2\right\rangle$ but in this new theorem we started with $\sqrt{2}$ and the theorem proves the existence of the polynomial from the field extension rather than the other way around.
(c) Corollary: If $a \in E \supseteq F$ is algebraic over F then there is a unique monic irreducible polynomial in $F[x]$ for which a is a root.
Proof: If $p(x)$ is the polynomial arising in the previous proof then we can multiply by the multiplicative inverse of the leading coefficient to get a monic irreducible polynomial. To show it is unique suppose $p_{1}(x) \neq p_{2}(x)$ were both monic irreducible polynomials of minimal degree with $p_{1}(a)=p_{2}(a)=0$. Then $\left(p_{1}-p_{2}\right)(x)$ would be a nonzero polynomial of smaller degree for which a is a root. Now then either $p_{1}-p_{2}$ itself is irreducible or it has an irreducible factor which will also have a as a root. Either way we have a nonzero polynomial of smaller degree for which a is a root, a contradiction.
$\mathcal{Q E D}$
(d) Definition: The polynomial arising in the previous theorem is called the minimal polynomial for a over F.
(e) Corollary: If $p(x)$ is the minimal polynomial for $a \in E \supseteq F$ over F then for all $f(x) \in F[x]$ with $f(a)=0$ we have $p(x) \mid f(x)$ in $F[x]$.
Proof: For any other $f(x) \in F[x]$ with $f(a)=0$ we know that $f(x) \in \operatorname{Ker} \phi=\langle p(x)\rangle$ with the ϕ from the theorem. Then $p(x) \mid f(x)$ by definition of $\langle p(x)\rangle$.
$\mathcal{Q} \mathcal{E} D$

4. The Degree of an Extension

(a) Definition: Let E be an extension field of F. We say that E has degree n over F and write $[E: F]=n$ if E has dimension n as a vector space over F. If $[E: F]$ is finite we say that E is a finite extension of F and otherwise we say that E is an infinite extension of F. Note: Basically (haha) if we can find a set $B=\left\{b_{1}, \ldots, b_{n}\right\}$ taken from E such that every element of E can be written uniquely as a linear combination of elements of B using coefficients in E then B is the basis and $[E: F]=n$ is the dimension.
Example: We have $[\mathbb{C}: \mathbb{R}]=2$ since $\{1, i\}$ form a basis for \mathbb{C} over reals because every element of \mathbb{C} can be written in the form $a(1)+b(i)$ with $a, b \in \mathbb{R}$.
Example: We have $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$ because elements in $\mathbb{Q}(\sqrt[3]{2})$ have the unique form $c_{0}+c_{1} \sqrt[3]{2}+a_{2}(\sqrt[3]{2})^{2}$ with $c_{0}, c_{1}, c_{2} \in \mathbb{Q}$ by a previous theorem.
(b) Theorem: If E is a finite extension of F then each $a \in E$ is algebraic over F and so E is algebraic over F.
Proof: Suppose $[E: F]=n$ and $a \in E$. The set $\left\{1, a, \ldots, a^{n}\right\}$ contains more than n elements and hence is linearly dependent over F, meaning there are constants c_{0}, \ldots, c_{n} with $c_{0}+c_{1} a+\ldots+c_{n} a^{n}=0$. Then a is a root of $f(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$ and hence is algebraic.
$\mathcal{Q E D}$
Note: The converse is false, for example $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \ldots)$ (forever!) is algebraic but not finite. Do you see why?
(c) Theorem: If we have finite field extensions $F \subseteq E \subseteq K$ then $[K: F]=[K: E][E: F]$.

Proof: Omit. The details are just icky and unenlightening and the basic idea can be captured with an example.
$\mathcal{Q E D}$
Example: Suppose we take \mathbb{Q} and extend it to $\mathbb{Q}(\sqrt{2})$ we have a degree 2 field extension with basis $\{1, \sqrt{2}\}$ in which all elements have the form $a+b \sqrt{2}$ with $a, b \in \mathbb{Q}$.
Suppose we then extend from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{2})(\sqrt[3]{5})=\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. This is a degree 3 field extension with basis $\left\{1, \sqrt{5},(\sqrt{5})^{2}\right\}$ in which all elements have the form $c+d \sqrt{5}+e(\sqrt{5})^{2}$ with $c, d, e \in \mathbb{Q}(\sqrt{2})$.

Really then all elements in $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ have the form:

$$
\begin{aligned}
c+d \sqrt{5}+e(\sqrt{5})^{2} & =\left(a_{1}+b_{1} \sqrt{2}\right)+\left(a_{2}+b_{2} \sqrt{2}\right) \sqrt[3]{5}+\left(a_{3}+b_{3} \sqrt{2}\right)(\sqrt[3]{5})^{2} \\
& =a_{1}+b_{1} \sqrt{2}+a_{2} \sqrt[3]{5}+b_{2} \sqrt{2} \sqrt[3]{5}+a_{3}(\sqrt[3]{5})^{2}+b_{3} \sqrt{2}(\sqrt[3]{5})^{2}
\end{aligned}
$$

Thus $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ is a degree 6 field extension of \mathbb{Q} with basis:

$$
\left\{1, \sqrt{2}, \sqrt[3]{5}, \sqrt{2} \sqrt[3]{5},(\sqrt[3]{5})^{2}, \sqrt{2}(\sqrt[3]{5})^{2}\right\}
$$

Note that conceptually we could have extended it to $\mathbb{Q}(\sqrt[3]{5})$ first, and this leads to the following diagram:

(d) Note: The theorem can also inform us about what field extensions are possible and whether elements are or are not in field extensions.
Example: By the above example any field extension between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ must have degree over \mathbb{Q} which divides 6 . This also tells us, for example, that $\sqrt[4]{7} \notin \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. This is because if it were then we would have:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{7}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})
$$

and hence:

$$
\underbrace{[\mathbb{Q}(\sqrt{2}, \sqrt[3]{5}): \mathbb{Q}]}_{6}=\underbrace{[\mathbb{Q}(\sqrt{2}, \sqrt[3]{5}): \mathbb{Q}(\sqrt[4]{7})]}_{?} \underbrace{[\mathbb{Q}(\sqrt[4]{7}): \mathbb{Q}]}_{4}
$$

However $4 \nmid 6$.

5. Final Theorems

(a) Theorem: If K is algebraic over E and E is algebraic over F then K is algebraic over F. Proof: Let $a \in K$. Since K is algebraic over E there is some irreducible polynomial $p(x)=c_{n} x^{n}+\ldots+c_{1} x+c_{0}$ with $c_{i} \in E$ such that $p(a)=0$. Consider now the diagram:

Since each c_{i} is algebraic over F each field extension up until the split is finite. Moreover the left branch is degree n and so $a \in F\left(c_{0}, c_{1}, \ldots, c_{n}, a\right)$ which is a finite extension over F. Thus a is algebraic over F.
$\mathcal{Q E D}$
(b) Theorem: Let E be an extension field of F. Then the set of all elements in E which are algebraic over F form a subfield of E.
Proof: Suppose $a, b \in E$ are algebraic over F and $b \neq 0$. Consider that $[F(a, b): F]=$ $[F(a, b): F(b)][F(b): F]$ which is finite since a, b are algebraic. Thus since $a+b, a-$ $b, a b, a / b \in F(a, b)$ we know that all four are in a finite extension of F and hence are algebraic over F. Thus the set of elements in E which are algebraic over F form a subfield of E.

