1. Finite versus Infinite Groups and Elements: Groups may be broadly categorized in a number of ways. One is simply how large the group is.
(a) Definition: The order of a group G, denoted $|G|$, is the number of elements in a group. This is either a finite number or is infinite. We will not distinguish beetween various infinite cardinalities.

- Example: If $G=\mathbb{Z}$ then $|G|=\infty$.
- Example: If $G=\left(\mathbb{Z}_{7},+\bmod 7\right)$ then $|G|=7$.
- Example: If $G=U(8)=(\{1,3,5,7\}, \cdot \bmod 8)$ then $|G|=4$.
(b) Definition: Given a group G and an element $g \in G$, we define the order of g, denoted $|g|$, to be the smallest positive integer n such that $g^{n}=e$. If there is no such n then we say $|g|=\infty$. Notice that if the operation is addition then g^{n} means $g+\ldots+g=n g$.
- Example: If $G=\mathbb{R}-\{0\}$ then $|1|=1,|-1|=2$, and otherwise $|g|=\infty$.
- Example: If $G=\mathbb{Z}_{10}$ then check out all the elements.
- Example: If $G=U(8)$ then check out all the elements.

2. Subgroups: When we're trying to understand the structure of a particular group it can be helpful to note that sometimes a group will have other groups as subsets of them. For example the group $2 \mathbb{Z}$ sits inside the group \mathbb{Z}.
(a) Definition: If G is a group and if $H \subseteq G$ is a group itself using G 's operation then G is a subgroup of G. We write $H \leq G$.

- Example: $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}.
- Example: $\{-1,1\}$ is a subgroup of $\mathbb{R}-\{0\}$.
- Example: \mathbb{Z}_{5} is not a subgroup of \mathbb{Z}. It is a subset but the operations are different.
(b) Theorem (One-Step Subgroup Test): Let G be a group and let $H \subseteq G$ with $H \neq \emptyset$. If $\forall a, b \in H$ we have $a b^{-1} \in H$ then $H \leq G$.
Proof: We need to verify closure and the additional three requirements but we need to do these in a particular order. We have associativity because the operation of H is the same as G. Since $H \neq \emptyset$ pick any $a \in H$. Then $a a^{-1}=e \in H$ so H has the identity. Pick any $a \in H$ then $e a^{-1} \in H$ so we have inverses. Pick any $a, b \in H$ Then $b^{-1} \in H$ and so $a b=a\left(b^{-1}\right)^{-1} \in H$ and we have closure.
$\mathcal{Q E D}$
Example: If G is an Abelian group then $H=\left\{x \mid x^{2}=e\right\} \leq G$.
Proof:
$\mathcal{Q E D}$
(c) Theorem (Two-Step Subgroup Test): Let G be a group and let $H \subseteq G$ with $H \neq \emptyset$. If $\forall a, b \in H$ we have $a b \in H$ and $a^{-1} \in H$ then $H \leq G$.
Proof: Given $a, b \in H$ since $b^{-1} \in H$ we have $a b^{-1} \in H$ and so the One-Step Subgroup Test is satisfied.
Example: If G is an Abelian group then $H=\{x| | x \mid<\infty\} \leq G$.
Proof:
$\mathcal{Q E D}$
(d) Theorem (Finite Subgroup Test): Let G be a group and let $H \subseteq G$ with $|H|<\infty$. If $\forall a, b \in H$ we have $a b \in H$ then $H \leq G$.
Proof: We need to show that $a^{-1} \in H$ for all $a \in H$ and then the Two-Step Subgroup

Test is satisfied. Given $a \in H$ if $a=e$ then $a^{-1}=e$ and we're done. If $a \neq e$ consider $S=\left\{a, a^{1}, a^{2}, \ldots\right\} \subseteq H$ by closure. Since H is finite two of these must be identical, say $a^{j}=a^{k}$ for $1 \leq j<k$. Then by canceling a^{j} we get $e=a^{k-j}=a a^{k-j-1}$ and so a^{k-j-1} is the inverse of a and is in S hence in H.
$\mathcal{Q E D}$
3. Special Subgroups: There are certain subgroups of groups which will be particularly useful to us.
(a) Definition/Theorem: For $g \in G$ define the set:

$$
\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}
$$

Then $\langle g\rangle \leq G$, this is called the subgroup generated by g.
Note: When we write something like g^{-2} we mean the inverse of g^{2}. $\mathcal{Q E D}$
Proof: Omit. Easy. Try it! $\mathcal{Q E D}$
Example: $\langle 3\rangle \subseteq \mathbb{R}-\{0\}$.
Note: If the operation is addition then this is the set of multiples of g as well as multiples of the inverse of g.
Example: $\langle 3\rangle \subseteq \mathbb{Z}$.
(b) Definition/Theorem: For a group G define the center of G :

$$
Z(G)=\{g \in G \mid \forall x \in G, g x=x g\}
$$

Then $Z(G) \leq G$.
Note: $Z(G)$ is the set of things in G which commute with everything in G.
Note: The Z stands for "Zentrum", a German word for "Center".
Proof: We'll use the two-step subgroup test. Assume $a, b \in Z(G)$ so that for all $x \in G$ we have $a x=x a$ and $b x=x b$. Let $x \in G$. First note that since $x a=a x$ we have $a^{-1} x a a^{-1}=a^{-1} a x a^{-1}$ and so $a^{-1} x=x a^{-1}$ and so $a^{-1} \in Z(G)$. Second note $a b x=$ $a x b=x a b$ so $a b \in Z(G)$.
(c) Definition/Theorem: For a group G and a specific $g \in G$ define the centralizer of g in G :

$$
C(g)=\{x \in G \mid x g=g x\}
$$

Then $C(g) \leq G$.
Note: $C(g)$ is the set of things in G which commute with g specifically.
Proof: We'll use the two-step subgroup test. Assume $a, b \in C(g)$ so that $a g=g a$ and $b g=g b$. The rest is the same as the previous proof except we're only using g specifically and not an arbitrary $x \in G$.
$\mathcal{Q E D}$
It's worth taking a second to consider the difference between the center and a centralizer. The center consists of all the elements which commute with everything. For a centralizer we take a specific element and find all the elements which commute with that specific element. It's fairly clear that $Z(G) \subseteq C(g)$ (can you prove it?) and counterexamples can be found with $C(g) \nsubseteq Z(G)$.

