
Math 403 Chapter 3: Finite Groups and Subgroups

1. Finite versus Infinite Groups and Elements: Groups may be broadly categorized in a
number of ways. One is simply how large the group is.

(a) Definition: The order of a group G, denoted |G|, is the number of elements in a group.
This is either a finite number or is infinite. We will not distinguish beetween various
infinite cardinalities.

• Example: If G = Z then |G| =∞.

• Example: If G = (Z7,+ mod 7) then |G| = 7.

• Example: If G = U(8) = ({1, 3, 5, 7}, · mod 8) then |G| = 4.

(b) Definition: Given a group G and an element g ∈ G, we define the order of g, denoted
|g|, to be the smallest positive integer n such that gn = e. If there is no such n then we
say |g| =∞. Notice that if the operation is addition then gn means g + ... + g = ng.

• Example: If G = R− {0} then |1| = 1, | − 1| = 2, and otherwise |g| =∞.

• Example: If G = Z10 then check out all the elements.

• Example: If G = U(8) then check out all the elements.

2. Subgroups: When we’re trying to understand the structure of a particular group it can be
helpful to note that sometimes a group will have other groups as subsets of them. For example
the group 2Z sits inside the group Z.

(a) Definition: If G is a group and if H ⊆ G is a group itself using G’s operation then G is
a subgroup of G. We write H ≤ G.

• Example: 2Z is a subgroup of Z.

• Example: {−1, 1} is a subgroup of R− {0}.
• Example: Z5 is not a subgroup of Z. It is a subset but the operations are different.

(b) Theorem (One-Step Subgroup Test): Let G be a group and let H ⊆ G with H 6= ∅.
If ∀a, b ∈ H we have ab−1 ∈ H then H ≤ G.
Proof: We need to verify closure and the additional three requirements but we need to
do these in a particular order. We have associativity because the operation of H is the
same as G. Since H 6= ∅ pick any a ∈ H. Then aa−1 = e ∈ H so H has the identity. Pick
any a ∈ H then ea−1 ∈ H so we have inverses. Pick any a, b ∈ H Then b−1 ∈ H and so

ab = a
(
b−1

)−1 ∈ H and we have closure. QED
Example: If G is an Abelian group then H = {x |x2 = e} ≤ G.
Proof: QED

(c) Theorem (Two-Step Subgroup Test): Let G be a group and let H ⊆ G with H 6= ∅.
If ∀a, b ∈ H we have ab ∈ H and a−1 ∈ H then H ≤ G.
Proof: Given a, b ∈ H since b−1 ∈ H we have ab−1 ∈ H and so the One-Step Subgroup
Test is satisfied. QED
Example: If G is an Abelian group then H = {x | |x| <∞} ≤ G.
Proof: QED

(d) Theorem (Finite Subgroup Test): Let G be a group and let H ⊆ G with |H| < ∞.
If ∀a, b ∈ H we have ab ∈ H then H ≤ G.
Proof: We need to show that a−1 ∈ H for all a ∈ H and then the Two-Step Subgroup



Test is satisfied. Given a ∈ H if a = e then a−1 = e and we’re done. If a 6= e consider
S = {a, a1, a2, ...} ⊆ H by closure. Since H is finite two of these must be identical, say
aj = ak for 1 ≤ j < k. Then by canceling aj we get e = ak−j = aak−j−1 and so ak−j−1

is the inverse of a and is in S hence in H. QED

3. Special Subgroups: There are certain subgroups of groups which will be particularly useful
to us.

(a) Definition/Theorem: For g ∈ G define the set:

〈g〉 = {gn |n ∈ Z}

Then 〈g〉 ≤ G, this is called the subgroup generated by g.
Note: When we write something like g−2 we mean the inverse of g2. QED
Proof: Omit. Easy. Try it! QED
Example: 〈3〉 ⊆ R− {0}.
Note: If the operation is addition then this is the set of multiples of g as well as multiples
of the inverse of g.
Example: 〈3〉 ⊆ Z.

(b) Definition/Theorem: For a group G define the center of G:

Z(G) = {g ∈ G | ∀x ∈ G, gx = xg}

Then Z(G) ≤ G.
Note: Z(G) is the set of things in G which commute with everything in G.
Note: The Z stands for “Zentrum”, a German word for “Center”.
Proof: We’ll use the two-step subgroup test. Assume a, b ∈ Z(G) so that for all x ∈ G
we have ax = xa and bx = xb. Let x ∈ G. First note that since xa = ax we have
a−1xaa−1 = a−1axa−1 and so a−1x = xa−1 and so a−1 ∈ Z(G). Second note abx =
axb = xab so ab ∈ Z(G). QED

(c) Definition/Theorem: For a group G and a specific g ∈ G define the centralizer of g in
G:

C(g) = {x ∈ G |xg = gx}

Then C(g) ≤ G.
Note: C(g) is the set of things in G which commute with g specifically.
Proof: We’ll use the two-step subgroup test. Assume a, b ∈ C(g) so that ag = ga and
bg = gb. The rest is the same as the previous proof except we’re only using g specifically
and not an arbitrary x ∈ G. QED

It’s worth taking a second to consider the difference between the center and a centralizer. The
center consists of all the elements which commute with everything. For a centralizer we take
a specific element and find all the elements which commute with that specific element. It’s
fairly clear that Z(G) ⊆ C(g) (can you prove it?) and counterexamples can be found with
C(g) 6⊆ Z(G).


