Math 403 Chapter 4: Cyclic Groups

1. **Introduction:** The simplest type of group (where the word “type” doesn’t have a clear meaning just yet) is a cyclic group.

2. **Definition:** A group G is cyclic if there is some $g \in G$ with $G = \langle g \rangle$. Here g is a generator of the group G. Recall that $\langle g \rangle$ means all “powers” of g which can mean addition if that’s the operation.

 (a) **Example:** \mathbb{Z}_6 is cyclic with generator 1. Are there others generators?
 (b) **Example:** \mathbb{Z}_n is cyclic with generator 1.
 (c) **Example:** \mathbb{Z} is cyclic with generator 1.
 (d) **Example:** \mathbb{R}^* is not cyclic.
 (e) **Example:** $U(10)$ is cylic with generator 3.

3. **Important Note:** Given any group G at all and any $g \in G$ we know that $\langle g \rangle$ is a cyclic subgroup of G and hence any statements about cyclic groups applies to any $\langle g \rangle$.

4. **Properties Related to Cyclic Groups Part 1:**

 (a) **Intuition:** If $|g| = 10$ then $\langle g \rangle = \{1, g, g^2, \ldots, g^9\}$ and the elements cycle back again. For example we have $g^2 = g^{12}$ and in general $g^i = g^j$ iff $10 | (i - j)$.

 (b) **Theorem:** Let G be a group and $g \in G$.
 - If $|g| = \infty$ then $g^i = g^j$ iff $i = j$.
 - If $|g| = n$ then $\langle g \rangle = \{1, g, g^2, \ldots, g^{n-1}\}$ and $g^i = g^j$ iff $n | (i - j)$.

 Proof: If $|g| = \infty$ then by definition we never have $g^i = e$ unless $i = 0$. Thus $g^i = g^j$ implies $i - j = 0$
 If $|g| = n < \infty$ first note that $\langle g \rangle$ certainly includes $\{1, g, g^2, \ldots, g^{n-1}\}$. Suppose $g^k \in \langle g \rangle$.
 Write $k = qn + r$ with $0 \leq r < n$ and then $g^k = (g^n)^q g^r = e^q g^r = g^r$ so g^k is one of those elements.
 Now for the iff. If $g^i = g^j$ then $g^{i-j} = e$. Write $i - j = qn + r$ with $0 \leq r < n$. Then $e = g^{rn} g^r = g^r$. Since n (the order) is the least positive but $r < n$ we must have $r = 0$ and so $n | (i - j)$.
 If $n | (i - j)$ then $i - j = qn$ and then $g^i = g^j g^{qn} = g^j$. \[\text{QED}\]

 (c) **Corollary:** For any $g \in G$ we have $|g| = |\langle g \rangle|$.
 Proof: Follows directly. \[\text{QED}\]

 (d) **Corollary:** For any $g \in G$ with $|g| = n$, $g^i = e$ iff $n | i$.
 Proof: This is the theorem with $j = 0$. \[\text{QED}\]
 Example: If $|g| = 10$ then if $g^i = e$ then $10 | i$, meaning we only get e when the powers are multiples of 10.
5. Properties Related to Cyclic Groups Part 2:

(a) **Intuition:** If $|g| = 30$ then if we examine something like $\langle g^{24} \rangle$ we find:

\[
\begin{align*}
g^{24} &= g^{24} \\
(g^{24})^2 &= g^{48} = g^{18} \\
(g^{24})^3 &= g^{72} = g^{12} \\
(g^{24})^4 &= g^{96} = g^{6} \\
(g^{24})^5 &= g^{120} = g^{0} = e
\end{align*}
\]

So here we can rewrite this as $\langle g^{24} \rangle = \langle g^{6} \rangle$ which is a bit nicer since the 6 is easier to work with. Note that $6 = \gcd(30, 24)$.

Likewise we can easily compute the order of g^{24}. We see it cycles every 5, just like g^{6}, and $5 = 30/\gcd(30, 24)$.

(b) **Theorem:** Let $g \in G$ with $|g| = n$ and let $k \in \mathbb{Z}^+$ then

- $\langle g^k \rangle = \langle g^{\gcd(n,k)} \rangle$
- $|g^k| = n/\gcd(n,k)$

Proof: For the first part since $\gcd(n,k) | k$ we know that

\[
\langle g^{\gcd(n,k)} \rangle \subseteq \langle g^{k} \rangle
\]

Then write $\gcd(n,k) = \alpha n + \beta k$ and observe that

\[
g^{\gcd(n,k)} = (g^n)^\alpha + (g^k)^\beta = (g^k)^\beta \in \langle g^{k} \rangle
\]

so that

\[
\langle g^{\gcd(n,k)} \rangle \subseteq \langle g^{k} \rangle
\]

For the second part first observe that

\[
(g^{\gcd(n,k)})^{n/\gcd(n,k)} = g^n = e
\]

so that:

\[
|g^{\gcd(n,k)}| \leq \frac{n}{\gcd(n,k)}
\]

On the other hand if we had $|g^{\gcd(n,k)}| = b < n/\gcd(n,k)$ then we have $e = (g^{\gcd(n,k)})^b = g^{b\gcd(n,k)}$ with $b\gcd(n,k) < n$, contradicting $|g| = n$. Thus we have:

\[
|g^{\gcd(n,k)}| = \frac{n}{\gcd(n,k)}
\]

Thus we have:

\[
|g^k| = |\langle g^k \rangle| = |\langle g^{\gcd(n,k)} \rangle| = \frac{n}{\gcd(n,k)}
\]

\[QED\]
(c) **Corollary:** In a finite cyclic group the order of an element divides the order of a group.

Proof: Follows immediately since every element looks like \(g^k \) and we have \(|g^k| gcd (n,k) = n\). QED

Example: In a cyclic group of order 200 the order of every element must divide 200. In such a group an element could not have order 17, for example.

(d) **Corollary:** Suppose \(g \in G \) and \(|g| = n < \infty \). Then:

\[
\langle a^i \rangle = \langle a^j \rangle \text{ iff } gcd (n,i) = gcd(n,j) \text{ iff } |a^i| = |a^j|
\]

Proof: Follows immediately. QED

Example: If \(|g| = 18\) then the fact that \(gcd (18,12) = 6 = gcd (18,6) \) guarantees that \(|g^12| = |g^6|\).

(e) **Corollary:** Suppose \(g \in G \) and \(|g| = n < \infty \). Then:

\[
\langle a \rangle = \langle a^j \rangle \text{ iff } gcd(n,j) = 1 \text{ iff } |a| = |a^j|
\]

Proof: Follows immediately. QED

Example: If \(|g| = 32\) then the fact that \(gcd (15,32) = 1 \) guarantees that \(\langle g^{15} \rangle = \langle g \rangle \), meaning \(g^{15} \) is a generator of \(\langle g \rangle \).

(f) **Corollary:** An integer \(k \in \mathbb{Z}_n \) is a generator of \(\mathbb{Z}_n \) iff \(gcd (n,k) = 1 \).

Proof: Follows immediately. QED

Example: The generators of \(\mathbb{Z}_{10} \) are 1, 3, 7, 9.

6. **Classification of Subgroups of Cyclic Groups:**

(a) **Theorem (Fundamental Theorem of Cyclic Groups):** We have:

- Every subgroup of a cyclic group is cyclic.
- For any group \(G \) if \(g \in G \) has \(|g| = n < \infty \) then the order of any subgroup of \(\langle g \rangle \) divides \(n \) and for each positive divisor \(k \) of \(n \) the group \(\langle g \rangle \) has exactly one subgroup of order \(k \), that being \(\langle g^{n/k} \rangle \)

Outline of Proof: Assume \(H \neq \{e\} \). Pick \(g \in G \) and some \(g^n \in H \) with minimal \(m \) by well-ordering. Clearly \(\langle g^m \rangle \subseteq H \) and every element \(g^k \) in \(H \) has this form by the division algorithm. This takes care of the first part.

For the second part (first sub-part) take a subgroup of \(\langle g \rangle \) which we already know is cyclic with \(\langle g^m \rangle \) for minimal \(m \) by well-ordering. Since \(e = g^n \) is in here we know \(n = qm \) by the division algorithm.

For the second part (second sub-part) let \(k \mid n \) and apply a previous theorem to show that \(\langle g^{n/k} \rangle \) has order \(k \). If \(H \) is any subgroup of order \(k \) we know \(H = \langle g^m \rangle \) with \(m \mid n \) then \(k = |a^m| = |a^{gcd (n,m)}| = ... = n/m \).

QED

Example: This categorizes cyclic groups completely. For example suppose a cyclic group has order 20. Every subgroup is cyclic and there are unique subgroups of each order 1, 2, 4, 5, 10, 20. If \(G \) has generator \(g \) then generators of these subgroups can be chosen to be \(g^{20/1} = g^{20}, g^{20/2} = g^{10}, g^{20/4} = g^5, g^{20/5} = g^4, g^{20/10} = g^2, g^{20/20} = g \).

(b) **Corollary:** For each positive divisor \(k \) of \(n \in \mathbb{Z}^+ \), the set \(\langle n/k \rangle \) is the unique subgroup of \(\mathbb{Z}_n \) of order \(k \). Moreover these are the only subgroups of \(\mathbb{Z}_k \).

Proof: Follows immediately. QED

Example:
(c) **Definition:** Define $\phi(1) = 1$ and for any $n \in \mathbb{Z}$ with $n > 1$ define $\phi(n)$ to be the number of positive integers less than n and coprime to n.

Example:

(d) **Theorem:** Suppose G is cyclic of order n. If $d \mid n$ then there are $\phi(d)$ elements of order d in G.

Proof: Every element of order d generates the single subgroup of order d and this single subgroup has exactly $\phi(d)$ generators. \hfill QED

Example:

(e) **Theorem:** If G is a finite group then the number of elements of order d is a multiple of $\phi(d)$.

Outline of Proof: Elements of order d group $\phi(d)$ at a time into subgroups of order d. \hfill QED

Example: