Math 403 Chapter 4: Cyclic Groups

1. **Introduction:** The simplest type of group (where the word “type” doesn’t have a clear meaning just yet) is a cyclic group.

2. **Definition:** A group G is cyclic if there is some $g \in G$ with $G = \langle g \rangle$. Here g is a generator of the group G. Recall that $\langle g \rangle$ means all “powers” of g which can mean addition if that’s the operation.

 (a) **Example:** \mathbb{Z}_6 is cyclic with generator 1. Are there other generators?
 (b) **Example:** \mathbb{Z}_n is cyclic with generator 1.
 (c) **Example:** \mathbb{Z} is cyclic with generator 1.
 (d) **Example:** \mathbb{R}^* is not cyclic.
 (e) **Example:** $U(10)$ is cyclic with generator 3.

3. **Important Note:** Given any group G at all and any $g \in G$ we know that $\langle g \rangle$ is a cyclic subgroup of G and hence any statements about cyclic groups applies to any $\langle g \rangle$.

4. **Properties Related to Cyclic Groups Part 1:**

 (a) **Intuition:** If $|g| = 10$ then $\langle g \rangle = \{1, g, g^2, \ldots, g^9\}$ and the elements cycle back again. For example we have $g^2 = g^{12}$ and in general $g^i = g^j$ iff $10 \mid (i - j)$.

 (b) **Theorem:** Let G be a group and $g \in G$.

 - If $|g| = \infty$ then $g^i = g^j$ iff $i = j$.
 - if $|g| = n$ then $\langle g \rangle = \{1, g, g^2, \ldots, g^{n-1}\}$ and $g^i = g^j$ iff $n \mid (i - j)$.

 Proof: If $|g| = \infty$ then by definition we never have $g^i = e$ unless $i = 0$. Thus $g^i = g^j$ iff $g^{i-j} = e$ iff $i - j = 0$.

 If $|g| = n < \infty$ first note that $\langle g \rangle$ certainly includes $\{1, g, g^2, \ldots, g^{n-1}\}$. Suppose $g^k \in \langle g \rangle$. Write $k = qn + r$ with $0 \leq r < n$ and then $g^k = (g^n)^q g^r = e^q g^r = g^r$ so g^k is one of those elements.

 Now for the iff. If $g^i = g^j$ then $g^{i-j} = e$. Write $i - j = qn + r$ with $0 \leq r < n$. Then $e = g^{qn} g^r = g^r$. Since n (the order) is the least positive but $r < n$ we must have $r = 0$ and so $n \mid (i - j)$.

 If $n \mid (i - j)$ then $i - j = qn$ and then $g^i = g^j g^{qn} = g^j$. \Box

 (c) **Corollary:** For any $g \in G$ we have $|g| = |\langle g \rangle|$.

 Proof: Follows directly. \Box

 (d) **Corollary:** For any $g \in G$ with $|g| = n$, $g^i = e$ iff $n \mid i$.

 Proof: This is the theorem with $j = 0$. \Box

 Example: If $|g| = 10$ then if $g^i = e$ then $10 \mid i$, meaning we only get e when the powers are multiples of 10.
5. Properties Related to Cyclic Groups Part 2:

(a) Intuition: If $|g| = 30$ then if we examine something like $\langle g^{24} \rangle$ we find:

\[
\begin{align*}
g^{24} &= g^{24} \\
(g^{24})^2 &= g^{48} = g^{18} \\
(g^{24})^3 &= g^{72} = g^{12} \\
(g^{24})^4 &= g^{96} = g^6 \\
(g^{24})^5 &= g^{120} = g^0 = e
\end{align*}
\]

We then see that $\langle g^{24} \rangle = \{e, g^6, g^{12}, g^{18}, g^{24}\} = \langle g^6 \rangle$. which is a bit nicer since the 6 is easier to work with. Note that $6 = \gcd(30, 24)$.

Likewise we can easily compute the order of g^{24}. We see it cycles every 5, just like g^6, and $5 = 30/\gcd(30, 24)$.

(b) Theorem: Let $g \in G$ with $|g| = n$ and let $k \in \mathbb{Z}^+$ then

(i) $\langle g^k \rangle = \langle g^{\gcd(n,k)} \rangle$

(ii) $|g^k| = |g^{\gcd(n,k)}|$

(iii) $|g^k| = n/\gcd(n, k)$

Proof: For (i) since $\gcd(n, k) \mid k$ we know that $\alpha \gcd(n, k) = k$ and so

\[
g^k = \left(g^{\gcd(n,k)}\right)^\alpha \in \langle g^{\gcd(n,k)} \rangle
\]

and so:

$\langle g^k \rangle \subseteq \langle g^{\gcd(n,k)} \rangle$

Then write $\gcd(n, k) = \alpha n + \beta k$ and observe that

\[
g^{\gcd(n,k)} = (g^n)^\alpha + (g^k)^\beta = (g^k)^\beta \in \langle g^k \rangle
\]

so that

$\langle g^{\gcd(n,k)} \rangle \subseteq \langle g^k \rangle$

Thus the two are equal.

Then (ii) follows immediately from the previous theorem.

For (iii) first observe that

\[
(g^{\gcd(n,k)})^{n/\gcd(n,k)} = g^n = e
\]

so that:

\[
|g^{\gcd(n,k)}| \leq \frac{n}{\gcd(n, k)}
\]

On the other hand if we had $|g^{\gcd(n,k)}| = b < n/\gcd(n, k)$ then we have $e = (g^{\gcd(n,k)})^b = g^{b\gcd(n,k)}$ with $b\gcd(n, k) < n$, contradicting $|g| = n$. Thus we have:

\[
|g^{\gcd(n,k)}| = \frac{n}{\gcd(n, k)}
\]

Thus we have:

\[
|g^k| = |g^{\gcd(n,k)}| = \frac{n}{\gcd(n, k)}
\]

QED
(c) **Corollary:** In a finite cyclic group the order of an element divides the order of a group.

Proof: Follows since every element looks like \(g^k \) and we have \(|g^k| \mid \text{gcd} (n, k) = n \). \(\square \)

Example: In a cyclic group of order 200 the order of every element must divide 200. In such a group an element could not have order 17, for example.

(d) **Corollary:** Suppose \(g \in G \) and \(|g| = n < \infty \). Then:

\[\langle a^i \rangle = \langle a^j \rangle \text{ iff } \text{gcd} (n, i) = \text{gcd} (n, j) \text{ iff } |a^i| = |a^j| \]

Proof: Follows immediately. \(\square \)

Example: If \(|g| = 18 \) then the fact that \(\text{gcd} (18, 12) = 6 = \text{gcd} (18, 6) \) guarantees that \(|g^{12}| = |g^6| \).

(e) **Corollary:** Suppose \(g \in G \) and \(|g| = n < \infty \). Then:

\[\langle a \rangle = \langle a^i \rangle \text{ iff } \text{gcd} (n, j) = 1 \text{ iff } |a| = |a^j| \]

Proof: Follows immediately. \(\square \)

Example: If \(|g| = 32 \) then the fact that \(\text{gcd} (15, 32) = 1 \) guarantees that \(\langle g^{15} \rangle = \langle g \rangle \), meaning \(g^{15} \) is a generator of \(\langle g \rangle \).

(f) **Corollary:** An integer \(k \in \mathbb{Z}_n \) is a generator of \(\mathbb{Z}_n \) iff \(\text{gcd} (n, k) = 1 \).

Proof: Follows immediately. \(\square \)

Example: The generators of \(\mathbb{Z}_{10} \) are 1, 3, 7, 9.
6. Classification of Subgroups of Cyclic Groups:

(a) **Theorem (Fundamental Theorem of Cyclic Groups):**
Suppose \(G = \langle g \rangle \) is cyclic.

(i) Every subgroup of \(G \) is cyclic.

(ii) If \(|G| = n \) then the order of any subgroup of \(G \) divides \(n \).

(iii) If \(|G| = n \) then for any \(k \mid n \) there is exactly one subgroup of order \(k \) and if \(g \) generates \(G \) then \(g^{n/k} \) generates that subgroup.

Proof:

(i) Let \(H \leq G \). If \(H = \{e\} \) then we’re done so assume \(H \neq \{e\} \). Choose \(g^n \in H \) with minimal \(m \in \mathbb{Z}^+ \) by well-ordering. Clearly \(\langle g^m \rangle \subseteq H \). If some \(g^k \in H \) then put \(k =qm+r \) with \(0 \leq r < m \) so \(r = k - qm \) and then \(g^r = g^k (g^m)^{-q} \in H \) and so \(r = 0 \) by minimality of \(m \) and so \(g^k = (g^m)^t \) and hence \(g^k \in \langle g^m \rangle \).

(ii) Take a subgroup \(H \leq G \). We know \(H \) is cyclic by (i) with \(H = \langle g^m \rangle \) with minimal \(m \in \mathbb{Z}^+ \) by well-ordering. Write \(n = qm + r \) with \(0 \leq r < m \) so \(r = n - qm \) and then \(g^r = g^n (g^m)^{-q} \in H \) and so \(r = 0 \) by minimality of \(m \) and so \(n = qm \) and then

\[
|H| = |\langle g^m \rangle| = |g^m| = \frac{n}{\gcd(n,m)} = \frac{n}{m}
\]

and so \(m|H| = n \) and so \(|H| \mid n \).

(iii) Observe first that for any \(k \mid n \) we have

\[
\left| \langle g^{n/k} \rangle \right| = |g^{n/k}| = \frac{n}{\gcd(n,n/k)} = \frac{n}{n/k} = k
\]

Thus certainly \(\langle g^{n/k} \rangle \) is a subgroup of order \(k \). We must show that it is unique.

Let \(H \leq G \) with \(|H| = k \mid n \). Since \(H \leq G \) by (ii) we have \(H = \langle g^m \rangle \) with \(m \mid n \).

Then we have:

\[
k = |H| = |\langle g^m \rangle| = |g^m| = \frac{n}{\gcd(n,m)} = \frac{n}{m}
\]

Thus \(m = n/k \) and so \(H = \langle g^m \rangle = \langle g^{n/k} \rangle \).

QED

Example: This categorizes cyclic groups completely. For example suppose a cyclic group has order 20. Every subgroup is cyclic and there are unique subgroups of each order 1, 2, 4, 5, 10, 20. If \(G \) has generator \(g \) then generators of these subgroups can be chosen to be \(g^{20/1} = g^{20}, g^{20/2} = g^{10}, g^{20/4} = g^5, g^{20/5} = g^4, g^{20/10} = g^2, g^{20/20} = g \) respectively.

(b) **Corollary:** For each positive divisor \(k \) of \(n \in \mathbb{Z}^+ \), the set \(\langle n/k \rangle \) is the unique subgroup of \(\mathbb{Z}_n \) of order \(k \). Moreover these are the only subgroups of \(\mathbb{Z}_k \).

Proof: Follows immediately. **QED**

Example: In \(\mathbb{Z}_{10} = \langle 1 \rangle \) the subgroup \(\langle 1 \rangle \) is the unique subgroup of order 10/1 = 10, the subgroup \(\langle 2 \rangle \) is the unique subgroup of order 10/2 = 5, the subgroup \(\langle 5 \rangle \) is the unique subgroup of order 10/1 = 2, the subgroup \(\langle 10 \rangle = \langle 0 \rangle \) is the unique subgroup of order 10/10 = 1.

(c) **Definition:** Define \(\phi(1) = 1 \) and for any \(n \in \mathbb{Z} \) with \(n > 1 \) define \(\phi(n) \) to be the number of positive integers less than \(n \) and coprime to \(n \).

Example: We have \(\phi(20) = 8 \) since 1, 3, 7, 9, 11, 13, 17, 19 are coprime.
(d) **Theorem:** Suppose G is cyclic of order n. If $d \mid n$ then there are $\phi(d)$ elements of order d in G.

Proof: Every element of order d generates a cyclic subgroup of order d but there is only one such cyclic subgroup, thus every element of order d is in that single cyclic subgroup of order d. If that cyclic subgroup is $\langle g \rangle$ with $|g| = d$ then note that the only elements of order d in it are those g^k with gcd $(d, k) = 1$ and there are $\phi(d)$ of those.

Example: In a cyclic group of order 100 noting that $20 \mid 100$ we then know there are $\phi(20) = 8$ elements of order 20.

(e) **Theorem:** If G is a finite group then the number of elements of order d is a multiple of $\phi(d)$.

Outline of Proof: Elements of order d can be collected $\phi(d)$ at a time into subgroups of order d.

Example: If G is an arbitrary finite group then the number of elements of order 20 is a multiple of 8. Keep in mind that this might be zero!