
Math 403 Chapter 6: Isomorphisms

1. Introduction: Consider the group Z4 = {0, 1, 2, 3} and the group U(10) = {1, 3, 7, 9}. If we
write down a Cayley table for each we get the following. In the U(10) case the positions of the
9 and 7 have been switched and we will see why soon.

Z4 U(10)

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 3 9 7
1 1 3 9 7
3 3 9 7 1
9 9 7 1 3
7 7 1 3 9

If we look closely at these two tables we might see that structurally they’re exacly the same
under the correspondance:

Z4 ↔ U(10)
0 ↔ 1
1 ↔ 3
2 ↔ 9
3 ↔ 7

This means that calculations on one side match calculations on the other:

Z4 ↔ U(10)
2 + 3 = 1 ↔ 9 · 7 = 3
1 + 3 = 0 ↔ 3 · 7 = 9

Also subgroups one one side match subgroups on the other:

Z4 ↔ U(10)
{0, 2} ≤ Z4 ↔ {1, 9} ≤ U(10)

As do orders:

Z4 ↔ U(10)
|2| = 2 ↔ |9| = 2

2. Definition: Given groups (G, ∗G) and (H, ∗H) we say that an isomorphism from G to H is a
mapping φ : G→ H which is 1-1 and onto with:

∀g1, g2 ∈ G we have φ(g1 ∗G g2) = φ(g1) ∗H φ(g2)

The use of ∗G and ∗H is to emphasize that the operation on the left takes place in G whereas
the operation on the right takes place in H. Typically we’ll just write:

φ(g1g2) = φ(g1)φ(g2)

With the understanding that g1g2 is in G with G’s operation because g1, g2 ∈ G whereas
φ(g1)φ(g2) is in H with H’s operation because φ(g1), φ(g2) ∈ H.

If an isomorphism exists then we say the groups are isomorphic and write G ≈ H.



3. Examples and Notes:

(a) The mapping φ : Z4 → U(10) given by φ(0) = 1, φ(1) = 3, φ(2) = 9 and φ(3) = 7 is an
isomorphism as the table suggests. Thus Z4 ≈ U(10).

(b) We see that Z ≈ 2Z with the isomorphism φ(n) = 2n.

To see that φ is onto take 2a ∈ 2Z and observe that φ(a) = 2a. To see that φ is 1-1
suppose φ(a) = φ(b) and then 2a = 2b so a = b. Then note that for any a, b ∈ Z we have:

φ(a+ b) = 2(a+ b) = 2a+ 2b = φ(a) + φ(b)

(c) We see that (R+, ·) ≈ (R,+) with the isomorphism φ(x) = log(x).

To see that φ is onto take y ∈ R and put x = 10y ∈ R+ and observe that φ(x) = φ(10y) =
log(10y) = y. To see that φ is 1-1 suppose φ(x1) = φ(x2) and then log(x1) = log(x2) so
x1 = x2. Then note that for any x, y ∈ R+ we have:

φ(xy) = log(xy) = log(x) + log(y) = φ(x) + φ(y)

Note the different operations in each group.

(d) Any two cyclic groups of order n are isomorphic.

To see this let G = 〈g〉 = {e = g0, g, ..., gn−1} and H = 〈h〉 = {e = h0, h, ..., hn−1}. Then
we can define φ(gk) = hk for each gk ∈ 〈g〉. To see that φ is onto take any element in 〈h〉
which has the form hk for some 0 ≤ k < n and observe that φ(gk) = hk. To see that φ is
1-1 suppose φ(gj) = φ(gk) and then hj = hk and since 0 ≤ j < n and 0 ≤ k < n we have
j = k and so gj = gk. Then note that for any gj , gk ∈ 〈g〉 we have:

φ(gjgk) = φ(gj+k) = hj+k = hjhk = φ(gj)φ(gk)

(e) Note that in rare cases you may define a function which isn’t well-defined (and hence not
really a function). For example if you tried to do φ : Z5 → Z7 with φ(n) = n you would
have φ(0) = 0 but also φ(0) = φ(5) = 5 so one elemement is mapping to two. This is less
of an issue with isomorphism than with functions, though.

(f) Note that the requirement that φ be 1-1 and onto are critical, otherwise φ : Z→ Z given
by φ(n) = 0 would certainly satisfy φ(a+ b) = φ(a) + φ(b).

(g) Proving that two groups are not isomorphic might seem challenging. If they have different
orders then it’s obvious since no φ could be 1-1 and onto. However if they have the same
order how could we possibly show that no φ at all could have the desired property?
We’ll see that this is usually done by resorting to properties that must appear under an
isomorphism and showing that one of those properties does not.

4. Theorem (The Inverse of an Isomorphism): Since φ : G→ H is a 1-1 and onto mapping
we may define φ−1 : H → G which is also 1-1 and onto by putting φ−1(h) = g where φ(g) = h.
Then φ−1 is an isomorphism from H to G.
Proof: The fact that φ−1 may be defined and is 1-1 and onto is clear. Observe that for
h1, h2 ∈ H we can find g1, g2 ∈ G with φ(g1) = h1 and φ(g2) = h2 and hence φ−1(h1) = g1
and φ−1(h2) = g2 and then we have

φ−1(h1h2) = φ−1(φ(g1)φ(g2)) = φ−1(φ(g1g2)) = g1g2 = φ−1(h1)φ−1(h2)



5. Theorem (Properties of Isomorphisms on Elements): Suppose φ : G → H is an
isomorphism. Then we have:

(a) φ(gk) = φ(g)k

Proof: Follows immediately from the definition of an isomorphism.

(b) φ(e) = e
Proof: φ(e) = φ(ee) = φ(e)φ(e) and cancel one of the φ(e).

(c) φ(g−1) = φ(g)−1

Proof: We have e = φ(e) = φ(gg−1) = φ(g)φ(g−1) and left-multiply both sides by
φ(g)−1.

(d) For all g ∈ G we have |g| = |φ(g)|. As a consequence G and H must have the same
number of elements of each order.
Proof: Observe that gn = e iff φ(gn) = φ(e) iff φ(g)n = e and the result follows
immediately.

(e) For all g1, g2 ∈ G we have g1g2 = g2g1 iff φ(g1)φ(g2) = φ(g2)φ(g1).
Proof: Follows immediately from the definition of an isomorphism.

(f) For g ∈ G we have G = 〈g〉 iff H = 〈φ(g)〉.
Proof: Forward direction: If G = 〈g〉 we claim H = 〈φ(g)〉. Let h ∈ H. Since φ is onto
and G = 〈g〉 there is some gk ∈ G with φ(gk) = h and then h = φ(gk) = φ(g)k ∈ 〈φ(g)〉.
Backward direction: Try it!

Here are some examples which use this theorem:

(a) Example: Z4 6≈ U(8) because U(8) has three elements of order 2 but Z4 has only one
element of order 2.

6. Theorem (Properties of Isomorphisms on the Group and on Subgroups): Suppose
φ : G→ H is an isomorphism. Then we have:

(a) |G| = |H|.
Proof: This follows from the fact that an isomorphism must be 1-1 and onto.

(b) G is cyclic iff H is cyclic.
Proof: Follows from the previous theorem.

(c) G is Abelian iff H is Abelian.
Proof: Forward direction: Suppose G is Abelian. Let h1, h2 ∈ H. Then h1 = φ(g1)
and h2 = φ(g2) for some g1, g2 ∈ G. Then h1h2 = φ(g1)φ(g2) = φ(g1g2) = φ(g2g1) =
φ(g2)φ(g1) = h2h1.
Backward direction: Try it!

(d) If G′ ≤ G then φ(G′) ≤ H.
Proof: We use the one-step subgroup test. Suppose h1, h2 ∈ φ(G′), then h1 = φ(g1) and
h2 = φ(g2) for some g1, g2 ∈ G. Then h1h

−1
2 = φ(g1)φ(g2)−1 = φ(g1g

−1
2 ) ∈ φ(G′).

(e) If H ′ ≤ H then φ−1(H ′) ≤ G.
Proof: Follows immediately from the previous with φ−1 in place of φ. Note: As a
consequence G and H must have the same number of subgroups of each order.

(f) We have φ(Z(G)) = Z(φ(G)).
Proof: First we show φ(Z(G)) ⊆ Z(φ(G)). Suppose g ∈ Z(G). We claim φ(g) ∈
Z(φ(G)). Given φ(x) ∈ φ(G) observe that φ(x)φ(g) = φ(xg) = φ(gx) = φ(g)φ(x).
Showing the reverse subset direction is similar, using φ−1.



Here are some examples which use this theorem:

(a) Example: D4 6≈ S4 because |D4| = 8 and |S4| = 24.

(b) Example: Z24 6≈ S4 because Z24 is Abelian but S4 is not.

(c) Example: If |G| = 100 and G has two distinct subgroups of order 25 then G is not cyclic
since a cyclic group of order 100 has a unique subgroup of order 25.

7. Definition: An automorphism of a group G is an isomorphism φ : G→ G.

Example: If G is a cyclic group then an automorphism φ of G can be completely determined
by choosing a generator of G and seeing where φ takes it. This is because once we know where
that generator goes we know where every element goes. However a generator must map to a
generator or else the mapping will not be 1-1. For example consider an automorphism of Z10.
We know φ(0) = 0 because it’s the identity. If we look at the generator 1 we can choose to map
this to 1, 3, 7, 9 since those are the other generators. Once the choice is made then everything
else follows. For example suppose we choose φ(1) = 3. Then automatically we get:

φ(2) = φ(1 + 1) = 3 + 3 = 6

φ(3) = φ(1 + 1 + 1) = 3 + 3 + 3 = 9

φ(4) = φ(1 + 1 + 1) = 3 + 3 + 3 + 3 = 12 = 2

φ(5) = ... = 15 = 5

φ(6) = ... = 18 = 8

φ(7) = ... = 21 = 1

φ(8) = ... = 24 = 4

φ(9) = ... = 27 = 7


