Math 403 Chapter 8: External Direct Products

1. Introduction: The idea of this chapter is to discuss how we can combine groups to form other groups. The reason for doing this is also to see the reverse, that a complicated group could possibly be broken down into a combination of simpler groups.
2. Definition: Given two group G and H we define the external direct product $G \oplus H$ to be the group whose set is:

$$
\{(g, h) \mid g \in G, h \in H\}
$$

and whose operation is:

$$
\left(g_{1}, h_{1}\right) *\left(g_{2}, h_{2}\right)=\left(g_{1} *_{G} g_{2}, h_{1} *_{H} h_{2}\right)
$$

This definition may be expanded to an arbitrary number of groups.
Example: Consider $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. This is the group with set:

$$
\{(0,0),(1,0),(0,1),(1,1)\}
$$

and a sample operation would be:

$$
(1,0)+(1,1)=(0,1)
$$

Example: Consider $U(10) \oplus U(5)$. This is the group with set:

$$
\begin{aligned}
& \{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4) \\
& (7,1),(7,2),(7,3),(7,4),(9,1),(9,2),(9,3),(9,4)\}
\end{aligned}
$$

and a sample operation would be:

$$
(3,3)(7,4)=(1,2)
$$

3. Properties of External Direct Products:

(a) Theorem: We have:

$$
|(g, h)|=\operatorname{lcm}(|g|,|h|)
$$

Proof: Put $L=\operatorname{lcm}(|g|,|h|)$. Since L is a multiple of each we know $L=\alpha|g|$ and $L=\beta|h|$ for $\alpha, \beta \in \mathbb{Z}$. Observe that:

$$
(g, h)^{L}=\left(g^{L}, h^{L}\right)=\left(\left(g^{|g|}\right)^{\alpha},\left(h^{|h|}\right)^{\beta}\right)=\left(e_{G}, e_{H}\right)
$$

which tells us that:

$$
L=\operatorname{lcm}(|g|,|h|) \geq|(g, h)|
$$

However we also know that:

$$
\left(e_{G}, e_{H}\right)=(g, h)^{|(g, h)|}=\left(g^{|(g, h)|}, h^{|(g, h)|}\right)
$$

So that $|(g, h)|$ is a common multiple of $|g|$ and $|h|$ and so:

$$
|(g, h)| \geq \operatorname{lcm}(|g|,|h|)
$$

(b) Theorem: If G and H are finite cyclic groups then $G \oplus H$ is cyclic iff $|G|$ and $|H|$ are coprime.
Proof: Suppose $|G|=m$ and $|H|=n$. Then we know $|G \oplus H|=m n$.
\Rightarrow : We assume $G \oplus H$ is cyclic and claim coprimality. Since $G \oplus H$ is cyclic we can find some $(g, h) \in G \oplus H$ with $\langle(g, h)\rangle=G \oplus H$ so that $|(g, h)|=m n$. Let $d=\operatorname{gcd}(m, n)$ and then since:

$$
(g, h)^{m n / d}=\left(\left(g^{m}\right)^{n / d},\left(h^{n}\right)^{m / d}\right)=\left(e^{n / d}, e^{m / d}\right)=(e, e)
$$

we know that $m n / d \geq m n$ (since $m n$ is the order, the least power that gives the identity) and so $d=1$.
\Leftarrow : We assume $G=\langle g\rangle$ and $H=\langle h\rangle$ and suppose $\operatorname{gcd}(m, n)=1$. Then by the previous theorem we have:

$$
|(g, h)|=\operatorname{lcm}(|g|,|h|)=\operatorname{lcm}(m, n)=\frac{m n}{\operatorname{gcd}(m, n)}=m n
$$

and so $G \oplus H$ is cyclic.
$\mathcal{Q E D}$

4. Theorem (Ramifications for \mathbb{Z}):

We have $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \approx \mathbb{Z}_{m n}$ iff $\operatorname{gcd}(m, n)=1$.
Proof: We know \mathbb{Z}_{m} and \mathbb{Z}_{n} are cyclic and so this follows immediately from the previous theorem.
$\mathcal{Q E D}$
Example: We can break down groups using prime factorizations, for example we know that:

$$
\mathbb{Z}_{100} \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{25}
$$

Note: We can't break these apart without coprimality, for example

$$
\mathbb{Z}_{4} \not \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

