
Math 403 Chapter 9: Normal Subgroups and Factor Groups

1. Introduction: A factor group is a way of creating a group from another group. This new
group often retains some of the properties of the original group.

2. Normal Subgroups:

(a) Definition: A subgroup H ≤ G is normal if gH = Hg for all g ∈ G. In this case we
write H / G.

There are a couple of ways to think about normal subgroups:

• Formally a subgroup is normal if every left coset containing g is equal to its right
coset containing g.

• Informally a subgroup is normal if its elements “almost” commute with elements in
g. This means that for any g ∈ G we don’t necessarily get gh = hg but at worst we
get gh = h′g for perhaps some other h′.

Example: In an Abelian group every subgroup H is normal because for all h ∈ H and
g ∈ G we have gh = hg.

Example: The center of a group is a normal subgroup because for all z ∈ Z(G) and
g ∈ G we have gz = zg.

Example: Consider the subgroup H = {(), (123), (132)} of S3. Observe that we have
the following left cosets:

()H = {(), (123), (132)}
(12)H = {(12), (23), (13)}
(13)H = {(13), (12), (23)}
(23)H = {(23), (13), (12)}

(123)H = {(123), (132), ()}
(132)H = {(132), (), (123)}

And we have the following right cosets:

H() = {(), (123), (132)}
H(12) = {(12), (13), (23)}
H(13) = {(13), (23), (12)}
H(23) = {(23), (12), (13)}

H(123) = {(123), (132), ()}
H(132) = {(132), (), (123)}

We see that we have ()H = H(), (12)H = H(12), (13)H = H(13), (23)H = H(23),
(123)H = H(123), (132)H = H(132).

Example: Consider the subgroup H = {(), (12)} of S3. Observe that (23)H = {(23), (132)}
but H(23) = {(23), (123)}. Since we have a left coset not equal to a right coset the sub-
group is not normal.



(b) Theorem (Normal Subgroup Test): A subgroup H of G is normal iff gHg−1 ⊆ H
for all g ∈ G.
Proof:

⇒: Suppose H /G. We claim gHg−1 ⊆ H for any g ∈ G. Let g ∈ G and then an element
in gHg−1 looks like ghg−1 for some h ∈ H. Then observe that ghg−1 = h′gg−1 = h′ ∈ H.
⇐: Suppose gHg−1 ⊆ H for all g ∈ G. We claim gH = Hg. Note that gH = gHg−1g ⊆
Hg and that Hg = gg−1Hg ⊆ gH. In the latter we have g−1Hg ⊆ H becaues the
supposition is true for g−1.

Example: The subgroup SL2R of 2 × 2 matrices with determinant 1 forms a normal sub-
group of GL2R. To see this note that if g ∈ GL2R and s ∈ SL2R then det(gsg−1) =
det(g) det(s)(1/ det(g)) = det(s) = 1 and so gsg−1 ∈ SL2R.

3. Factor Groups:

Definition/Theorem: Let G be a group and let H /G. Then we define G/H (read ”G mod
H”) to be the set of left cosets of H in G and this set forms a group under the operation
(aH)(bH) = abH.
Proof: We have a few things to show here:

• Any given left coset will have multiple representatives because we know that aH and a′H
can be identical for a 6= a′. Consequently we first need to be sure that our operation is
well-defined, meaning that if we choose a′H = aH and b′H = bH and we do (a′H)(b′H) =
a′b′H we get the same result as if we do (aH)(bH) = abH. In other word we must verify
that abH = a′b′H. Since a′H = aH and since a′ ∈ a′H we have a′ = ah1 and likewise
b′ = bh2 for some h1, h2 ∈ H. It follows that a′b′H = ah1bh2H = abh′1h2H = abH.

• The identity is eH.

• The inverse of aH is a−1H.

• Associativity follows since (aH)(bHcH) = (aH)(bcH) = abcH = (abH)(cH) = (aHbH)cH.

Example: If G = Z and h = 4Z then there are four distinct cosets:

0 + 4Z = {...,−8,−4, 0, 4, 8, ...}
1 + 4Z = {...,−7,−3, 1, 5, 9, ...}
2 + 4Z = {...,−6,−2, 2, 6, 10, ...}
3 + 4Z = {...,−5,−1, 3, 7, 11, ...}

These four cosets form a group with set:

{0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}

The operation is:
(a + 4Z) + (b + 4Z) = (a + b) + 4Z

So for example:
(3 + 4Z) + (2 + 4Z) = 5 + 4Z = 1 + 4Z

We immediately notice that Z/4Z ≈ Z4.



Example: If G = U(32) = {1, 3, 5, 7, 9, ..., 31} and H = {1, 15}. then there are eight distinct
cosets:

1H = {1, 15}
3H = {3, 13}
5H = {5, 11}
7H = {7, 9}

17H = {17, 31}
19H = {19, 29}
21H = {21, 27}
23H = {23, 25}

These eight cosets for a group with set:

{1H, 3H, 5H, 7H, 17H, 19H, 21H, 23H}

The operation is aHbH = abH. So for example:

5H7H = 35H = {35, 525} = {3, 13} = 3H

3H19H = 59H = {59, 885} = {27, 21} = 21H

Note: The terminology ”G mod H” arises from the analogy with modular arithmetic. When
we work in Z mod 5, for example, we say that 8 = 3 mod 5 because 8 = 3+5 = 3 mod 5 because
the 5 ”gets absorbed” into the modulus. That is, 8 mod 5 = (3 + 5) mod 5 = 3 + (5 mod 5) =
3 mod 5. Similarly if we’re looking at gH and if g = g′h then gH = g′hH = g′H because the
h gets absorbed by the H.

4. Applications:

(a) Theorem: If G/Z(G) is cyclic then G is Abelian.
Proof: Since G/Z(G) is cyclic we know there is some g0 ∈ G such that G/Z(G) =
〈g0Z(G)〉. Thus every coset has the form gk0Z(G) for some k. Given a, b ∈ G we know
that each is in some coset so a ∈ gj0Z(G) and b ∈ gk0Z(G) for some j, k and moreover then

a = gj0z1 and b = gk0z2 for z1, z2 ∈ Z(G). Then observe that:

ab = gj0z1g
k
0z2 = gj0g

k
0z1z2 = gk0g

j
0z2z1 = gk0z2g

j
0z1 = ba

QED
Example: Suppose G is non-Abelian and |G| = pq where p, q are distinct primes then
G has trivial center consisting only of {e}. This is because a bigger center would have to
have order p, q or pq by Lagrange’s Theorem. The first two fail by this theorem and the
third fails because G is non-Abelian.

Note: This has meaningful results. For example suppose we know that |G| = pq where
p, q are prime and suppose we find just one g0 ∈ G with g0 ∈ Z(G) and g0 6= e. Since
Z(G) ≤ G we know that by Lagrange’s Theorem we must have |Z(G)| = 1, p, q or pq.
Since |Z(G)| 6= 1 we know it’s p, q or pq. If |Z(G)| = pq then G is Abelian. Without loss
of generality if |Z(G)| = p then |G/Z(G)| = pq/p = q and snce groups of prime order are
cyclic we have G/Z(G) cyclic and then G Abelian. So this goes to show that in such a
group if we find one single non-identity element in the center then the group is Abelian
and everything is in the center.


